$K \cap PMA$

Гидрокси-аналог метионина: эффективность подтверждена

Станислав БУДНИК, технический менеджер **Мэтью КОЛВИН,** менеджер по маркетингу **Компания «Новус Европа»**

Имеющиеся сегодня знания о потребностях бройлеров в аминокислотах на всех этапах развития стали основой для составления рационов, способствующих реализации потенциала птицы. В программах по их расчету, базирующихся ранее на концепции учета переваримости протеина, теперь главным образом используют данные по доступности незаменимых аминокислот и необходимости в них.

азные источники протеина отличаются по доступности незаменимых аминокислот. Некоторая информация о полноценности протеина кормовых ингредиентов представлена в таблице 1. Она свидетельствует о важности подобного сравнительного анализа, так как расчет рациона на его базе точнее с точки зрения потребности птицы и более обоснован экономически, поскольку дает возможность эффективнее использовать протеин корма.

Следует, однако, отметить, что такой подход не должен исключать применение коммерческих источников аминокислот для балансирования рационов.

Таблица 1 Содержание усвояемого метионина в разных кормовых ингредиентах

- разпинериневини редисинан					
Ингредиент	Метио	Усвоя-			
(% сырого протеина)	общий	усвоя- емый	емость, %		
Шрот соевый (48%)	0,64	0,58	0,91		
Мясо-костная мука (48%)	0,64	0,54	0,85		
Шрот хлопковый (46%)	0,64	0,46	0,72		

Источник: Хайлайн. Рекомендации по учету протеина и аминокислот.

Метионин — незаменимая при синтезе протеина аминокислота, которая играет также ключевую роль при формировании иммунного ответа и в антиокислительных процессах. Метионин не может быть синтезирован тканями птицы и поэтому должен содержаться в достаточном количестве в рационе.

На протяжении уже нескольких лет на рынке представлены два основных источника метионина для бройлеров. Это DL-метионин в форме порошка с активностью метионина 99% и гидрокси-аналог метионина (гидрокси-метилтиобутановая кислота — ГМТБК) в жидкой форме (АЛИМЕТ®, «Новус Интернэшнл Инк.», США) с активностью метионина 88% и содержанием воды 12%.

Данные исследований метаболизма животных показывают, что ГМТБК-метионин очень быстро трансформируется в биологически активный L-метионин и встраивается в протеин тканей.

С момента появления на рынке жидкой формы метионина ведутся споры о его фактической активности. Однако многочисленные опыты на базе эквимолярного

анализа доказали превосходство ГМТБК на уровне от 60 до 100% по сравнению с DL-метионином. Подобный разброс данных — это следствие вариаций параметров в проводимых опытах и статистического отклонения. Исследования, построенные не на эквимолярном анализе, неизбежно дают заниженные значения действенности метионина в жидкой форме.

Для сравнительной оценки эффективности двух видов метионина в Научном институте исследования кормов (Шозорст, Нидерланды, 2015) провели эксперимент на бройлерах на протяжении полного цикла выращивания, от 0 до 38 дней. Не сортированных по полу суточных цыплят кросса «Росс-308» в количестве 1120 голов разделили на семь опытных групп с четырьмя повторами (по 20 голов в каждой группе). Содержание было напольным, кормов и воды давали вволю. Эксперимент включал соответственно семь рационов, рассчитанных на основе единого базового нормирования. По метионину их балансировали с помощью двух источников (ГМТБК и DL-метионин) на эквимолярной основе так, чтобы получилось по две идентичные группы. Кормление было трехфазное (стартер 0-14 дней, гровер 14-28 дней, финишер 28-38 дней). Соотношение «усвояемые TSAA (серосодержащие аминокислоты): лизин основного рациона (OP)» составляло 0,59. Расчетные значения усвояемого метионина и соотношение «TSAA: лизин» в каждом из семи рационов представлены в таблице 2. Оценка расчетным путем ценности метионина и содержания лизина в разных источниках дала результаты в пределах 96-104%.

Живую массу, потребление и конверсию корма оценивали в конце каждой фазы роста. Данные анализировали методами ANOVA и экспоненциальной регрессии (Genstat).

Показатели продуктивности в стартовый период представлены в таблице 3. На этой стадии значительных отличий в скорости роста по опытным группам не выявлено. При этом уже на раннем

Таблица 2 Расчетные значения усвояемого метионина и соотношения «TSAA: лизин» в опытных рационах

		Фаза кормления					
Опыт	Источник метионина	Стартер (0—14 дней)		Гровер (14–28 дней)		Финишер (28–38 дней)	
		Метионин усвояемый, г/кг	TSAA: лизин	Метионин усвояемый, г/кг	TSAA: лизин	Метионин усвояемый, г/кг	TSAA: лизин
1	OP	3,49	0,59	2,9	0,59	2,53	0,59
2	DL-метионин	4,36	0,67	3,66	0,67	3,2	0,67
3	ГМТБК	4,36	0,67	3,66	0,67	3,2	0,67
4	DL-метионин	5,23	0,74	4,41	0,74	3,86	0,74
5	ГМТБК	5,23	0,74	4,41	0,74	3,86	0,74
6	DL-метионин	6,1	0,81	5,16	0,81	4,53	0,81
7	ГМТБК	6,1	0,81	5,16	0,81	4,53	0,81

12 животноводство россии май 2016 на правах рекламы

этапе очевидно влияние разных источников метионина на конверсию корма и эффективность TSAA, выраженную в отношении потребленных аминокислот TSAA (мг) к привесу (г). В группах, в рационы которых метионин вводили в виде ГМТБК, значения конверсии корма и эффективности TSAA (p < 0.001) были лучше по сравнению с показателями птицы, получавшей DL-метионин.

Средние данные по живой массе (петушки и курочки вместе) за весь период исследования продемонстрированы на рисунке 1. Очевидно, что увеличение уровня метионина в рационе дает заметное повышение конечной массы птицы (p=0,055). Кроме того, полученые в опытных группах результаты были идентичны вне зависимости от источника метионина в рационах, а оценка его активности на эквимолярном уровне показала, что ГМТБК-метионин на 100% эквивалентен DL-метионину.

Общее ускорение роста не зависело от содержания метионина в рационе, чего нельзя сказать о конверсии корма. Разница в ней была значительна (p < 0,01) (рис. 2). Источник метионина здесь не играл роли (p > 0,05), однако при более высокой дозировке метионина в группах с ГМТБК в рационах конверсия корма была заметно лучше, чем в группах с DL-метионином. Таким образом, очевидны преимущества метионина в органической форме (ГМТБК), положительное влияние которого на здоровье кишечника уже доказано ранее.

Целью поставленного эксперимента было определение влияния различных источников метионина на продуктивность бройлеров при дозировках, используемых в условиях коммерческого производства. Так, соотношение «TSAA: лизин в усвояемой форме» в рационах для трех фаз выращивания составляло 0,67; 0,74 и 0,81 соответственно. Ранее было выявлено (Гулар $u \partial p$., 2011), что оптимум для метионина в рационах четырех фаз для петушков кросса «Кобб» — 0,72. Для формирования грудной мышцы у птицы кросса «Росс» его необходимо несколько больше — 0,75 (Дозье и др., 2013). Таким образом, проведенный опыт имеет практическое значение, поскольку условия в нем соответствуют производственным параметрам, применимым для реализации генетического потенциала птицы.

Существенных отличий в показателях продуктивности бройлеров при оценке до 38 дней выявлено не было вне зависимости от источника метионина в рацио-

	Таблица 3
Живая масса, конверсия корма и эффективность TSAA v бройлеров в 0–14	4 дней

Опыт	Источник метионина	Метионин рациона, г/кг	Живая масса, г	Конверсия корма	Эффективность TSAA, мг/кг
1	OP	3,9	426	1,171ª	9,62ª
2	DL-метионин	4,7	418	1,163ª	10,57⁵
3	ГМТБК	4,7	419	1,169ª	10,63 ^b
4	DL-метионин	5,6	429	1,195 ^b	11,91°
5	ГМТБК	5,6	411	1,164ª	11,6 ^d
6	DL-метионин	6,5	411	1,2°	12,99 ^f
7	ГМТБК	6,5	427	1,18 ^{ab}	12,79e

Примечание. Значения показателей с различными индексами существенно варьируют, р > 0,001.

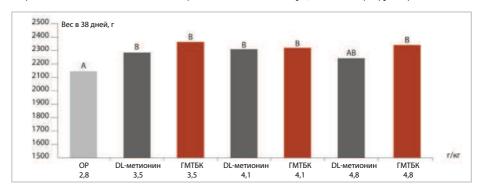


Рис. 1. Средняя масса бройлеров в 38 дней при разном уровне метионина в финишном рационе, г

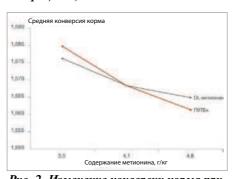


Рис. 2. Изменение конверсии корма при различном уровне метионина в рационах (0—38 дней)

нах. Различия отмечены лишь в период с 0 до 14 дней, когда в группах с ГМТБК в рационах конверсия корма и эффективность TSAA аминокислот были лучше (p < 0,001). Расчетные значения эффективности воздействия TSAA на рост птицы за весь опытный период представлены на **рисунке 3**. При каждом повышении дозы метионина из любого источника эффективность TSAA была идентична. Следовательно, на эквимолярной основе влияние ГМТБК на 100% аналогично действию DL-метионина.

Проведенные исследования в полной мере доказывают необходимость применения различных источников метионина для повышения продуктивности бройлеров и эффективности использования протеина рациона. Органические формы метионина, такие как его гидрокси-ана-

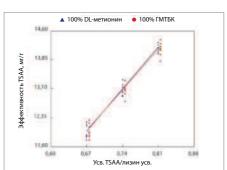


Рис. 3. Эффективность TSAA (0—38 дней) при различном соотношении «TSAA: лизин», мг/г привеса

лог АЛИМЕТ®, обеспечивающий 88%-ю активность метионина и оказывающий положительное влияние на здоровье желудочно-кишечного тракта, дают равные или лучшие результаты на разных фазах выращивания бройлеров по сравнению с показателями при применении DL-метионина. В стартовую фазу откорма птицы добавление в рацион ГМТБК позволило снизить конверсию корма, а на эквимолярном уровне биологическая действенность ГМТБК оценивалась в 100% в сравнении с аналогичным значением DL-метионина на протяжении всего опытного периода.

Представительство компании «Новус Европа С.А./Н.В.» (Бельгия) в Москве Тел.: +7 (495) 660-88-96 Факс: +7 (495) 660-88-95 www.novusint.com/ru-ru