Растительные масла в питании бройлеров

Андрей ДЫМКОВ Наталья МАЛЬЦЕВА, кандидаты сельскохозяйственных наук Татьяна СЕЛИНА СибНИИП

Во многих странах сегодня используют системы оценки кормов и нормирования потребностей поголовья по показателям чистой или обменной энергии. Так, кормосмеси для бройлеров должны быть калорийными, но, если в них окажется недостаточно кормовых жиров, рационы станут дефицитными по энергии. Обеспеченность птицы энергией — один из главных критериев, по которым определяют уровень ее продуктивности. Именно поэтому энергетическому питанию следует уделять не меньше внимания, чем белковому.

легкодоступным источникам энергии относят жиры животного и растительного происхождения. За рубежом их доля в комбикормах для птицы достигает 6%, в нашей стране — едва доходит до 1,2%. В России ежегодно производят около 10 тыс. т кормового жира, потенциал производства составляет 90 тыс. т. Если учесть, что по энергетической ценности 1 кг жира эквивалентен 3 кг зерна, в год можно экономить почти 0,3 млн т зерна.

Растительные масла, особенно подсолнечное и соевое, богаты линолевой кислотой (ее уровень варьирует в диапазоне 50-60%). При избыточном поступлении в организм линолевой кислоты нарушается минеральный обмен, что отрицательно сказывается на качестве яйца (например, ухудшается состояние скорлупы, увеличивается количество крупных яиц, а общее число снесенных яиц уменьшается). Кроме того, у кур развиваются различные патологии воспроизводительной системы и повышается содержание абдоминального жира. При недостатке линолевой кислоты замедляется рост молодняка и задерживается появление вторичных половых признаков.

Питательная ценность жиров и масел характеризуется содержанием в них

обменной энергии и ненасыщенных жирных кислот. При всем многообразии жирных кислот лишь немногие из них (около 20) определяют структуру и свойства липидов. В липидном питании птицы важную роль играют пять жирных кислот — линолевая, линоленовая, олеиновая, пальмитиновая и стеариновая (в растительных маслах и животных жирах на их долю приходится более 90%).

В состав растительных масел входит 50—90% ненасыщенных жирных кислот, которые хорошо усваиваются в организме животных и птицы. Мы провели исследования, чтобы определить, как сказывается на мясной продуктивности и других зоотехнических показателях включение растительных масел в кормосмеси для бройлеров.

В ходе эксперимента, проведенного в условиях ФГБНУ «ЭПХ СибНИИП» на цыплятах-бройлерах кросса «Сибиряк 2С», сформировали восемь групп — контрольную и семь опытных — по 50 голов в каждой. В кормосмесь для цыплят контрольной группы вводили подсолнечное масло, в рационы для сверстников первой опытной — рапсовое, второй опытной — рыжиковое, третьей опытной — льняное, четвертой опытной — соеторой опытной — соетор

вое. Аналоги шестой и седьмой опытных групп получали корм с повышенным содержанием рапсового и льняного масел.

Химический состав и питательность приготовленных кормосмесей определяли в лаборатории физиологии и биохимии, анализ рационов на токсичность проводили в лаборатории отдела ветеринарии СибНИИП.

Продолжительность выращивания цыплят составляла 42 дня: первый период (стартовый) — с 1-го по 14-й день, второй (ростовой) — с 15-го по 28-й день, третий (финишный) — с 29-го по 42-й день.

За время исследований сохранность бройлеров опытных групп была высокой, за исключением птицы четвертой и пятой опытных групп, получавшей кормосмесь с сурепным и соевым маслами, — соответственно 94,1 и 96,1% против 100% в контрольной группе.

Результаты эксперимента показали, что в конце периода выращивания петушки опытных групп по живой массе превосходили сверстников контрольной на 0,1—8,5%. Живая масса бройлеров первой опытной группы оказалась на 2% ниже, чем живая масса особей контрольной группы.

Живая масса курочек четвертой и пятой опытных групп, потреблявших кормосмеси с сурепным и соевым маслами, а также шестой и седьмой опытных групп, которым скармливали рационы с повышенным содержанием рапсового и льняного масел, увеличилась на 0,3—6,4%. В то же время вес аналогов первой, второй и третьей опытных групп был на 0,02—1% меньше, чем вес сверстников контрольной группы.

Установлено, что за период выращивания среднесуточное потребление

Результаты контрольного убоя бройлеров								
Показатель	Группа							
	контрольная	опытная						
		первая	вторая	третья	четвертая	пятая	шестая	седьмая
Петушки								
Убойный выход, %	66,9	67,1	68,7*	69,3*	68,4	68,7	68,3	68,8*
Масса, г:								
предубойная	2496,7	2445*	2498,3	2581,7**	2613,3**	2680***	2708,3***	2553,3*
потрошеной тушки	1671,7	1640	1716,7	1788,3**	1788,3**	1841,7***	1848,3***	1756,7**
мышц	999	948,1	1022,9	1089,2	1048,2	1179**	1087,5	1099,3*
Отношение съедобных частей к несъедобным, ед.	2,2	2,1	2,3	2,4*	2,3	2,4	2,3	2,4
Курочки								
Убойный выход, %	69,8	69,1	66,9	70,7	68,5	69,2	69,6	67,9
Масса, г:								
предубойная	2173,3	2153,7	2170	2175	2300***	2313,3***	2180	2205*
потрошеной тушки	1516,7	1487,5	1453,3	1536,7	1576,7	1598,3*	1518,3	1498,3
мышц	970,5	920,2	968,3	1004,3	1010,6	1092,1**	1012,4	1020,9
Отношение съедобных частей к несъедобным, ед.	2,4	2,2*	2,3	2,5	2,3	2,4	2,4	2,4

^{*} p > 0,01 и *** p > 0,001 — достоверно; ** p < 0,05 — недостоверно.

корма во всех опытных группах было на 1,9—15,7% ниже, чем в контрольной. При этом бройлеры шестой и седьмой опытных групп, получавшие кормосмеси с повышенной концентрацией рапсового и льняного масел, по этому показателю соответственно на 4,9 и 14% превосходили особей первой и третьей опытных групп, в рационы которых вводили рапсовое и льняное масла в стандартной дозировке.

Затраты корма на 1 кг прироста живой массы в контрольной группе оказались на 4,1-17,3% выше, чем в опытных. Данные исследований показали, что при выращивании цыплят третьей опытной группы (им в кормосмесь вводили льняное масло) использовали на 2,8% меньше корма, чем при выращивании бройлеров седьмой опытной группы (их рационы обогащали льняным маслом в повышенной дозировке). Такую же тенденцию отметили в первой и шестой опытных группах, где птице давали корм с рапсовым маслом в стандартной и повышенной дозировках. Разница составила 0.9%.

Чтобы определить выход мяса и отношение съедобных частей тушки к несъедобным, на 42-й день провели контрольный убой. Данные представлены в таблице.

Установлено, что предубойная масса бройлеров третьей, четвертой, пятой, шестой и седьмой опытных групп, получавших кормосмеси с льняным, сурепным, соевым маслами, а также с рапсовым и льняным маслами в повышенной

дозировке, оказалась на 1,9—6,9% выше, чем предубойная масса аналогов контрольной группы.

Масса потрошеной тушки петушков опытных групп была на 2,7—10,6% больше, чем масса потрошеной тушки птицы контрольной группы. В то же время масса потрошеной тушки бройлеров первой опытной группы, потреблявших корм с рапсовым маслом, была на 1,9% ниже, чем масса потрошеной тушки птицы контрольной группы.

Наибольшая масса потрошеной тушки курочек зафиксирована в третьей, четвертой, пятой и шестой опытных группах, где поголовью скармливали рационы с добавлением льняного, сурепного, соевого масел и рапсового масла в повышенной дозировке. Разница между показателями кур этих групп и аналогов контрольной варьировала в пределах 1.3—5.4%.

Во всех опытных группах выход мяса петушков был на 0,2—2,4% выше, чем в контрольной. Расчеты показали, что в третьей опытной группе, где птице давали комбикорм, обогащенный льняным маслом, убойный выход курочек увеличился на 0,9% по сравнению с результатами, полученными в контрольной группе (в остальных группах выход мяса курочек снизился на 0,2—2,9%).

По массе мышц бройлеры второй, третьей, четвертой, пятой, шестой и седьмой опытных групп превосходили сверстников контрольной на 2,4—18%. Исключение составила первая опытная группа: подопытные, потреблявшие

кормосмесь с рапсовым маслом, по массе мышц на 5,1% уступали сверстникам контрольной.

Ввод в рацион рапсового, рыжикового и льняного масел, а также рапсового масла в повышенной дозировке привел к тому, что масса мышц курочек первой, второй, третьей и шестой опытных групп уменьшилась на 2,4—11,1% по сравнению с массой мышц особей контрольной группы.

Отмечено, что при использовании льняного, соевого и большего количества рапсового и льняного масел выход мяса вырос на 2–4,2%, а при добавлении рапсового, рыжикового и сурепного масел снизился на 0,8–2,8%.

Результаты эксперимента продемонстрировали, что за счет дополнительно полученного мяса прибыль в опытных группах оказалась выше, чем в контрольной: в первой — на 61,3%, во второй — на 70,6%, в третьей — на 239,8%, в четвертой — на 109,2%, в пятой — на 154,2%, в шестой — на 101,9%, в седьмой — на 51,7%. При этом учитывали количество израсходованного масла и потребленного птицей комбикорма.

Благодаря тому что в состав кормосмесей включали рапсовое, рыжиковое, льняное, соевое и сурепное масла в разной дозировке, рентабельность производства мяса бройлеров улучшилась на 3,6—19,1%. Следовательно, применять растительные масла при выращивании птицы мясных кроссов экономически выгодно.

Омская область