Какой фосфат выбрать?

Леонид ПОДОБЕД, доктор сельскохозяйственных наук Институт животноводства НААН Украины

По типу питания свиней причисляют к группе всеядных млекопитающих, но использование в рационах компонентов животного происхождения сегодня сведено к минимуму из соображений экономической целесообразности. Очень часто откормочное поголовье вообще не получает животных кормов (исключение - подсосные поросята и молодняк в послеотъемный период). Питательную основу большинства рационов для свиней составляют зерно и продукты его переработки, а также жмыхи и шроты масличных культур.

жмыхах и шротах концентрация сырой золы варьирует в диапазоне 5-8%, причем на долю фосфора приходится менее 1%. В зерновых кормах золы еще меньше — 1-3%, а уровень фосфора в них редко превышает 0,4%. К тому же в растительных кормах от 40 до 75% фосфора находится в виде труднорастворимых фитиновых комплексов. Это означает, что без дополнительного регулирования фосфорного питания в организм свиней будет поступать 0,2-0,3% содержащегося в сухом веществе рациона доступного фосфора при норме 0,5-0,8% (Калашников А.П. и др., 2003).

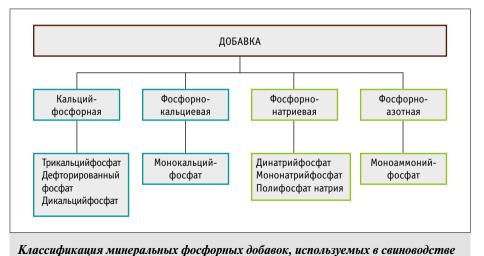
При скармливании зерновых кормов и растительных белковых добавок в разных комбинациях даже при использовании ферментных препаратов (фитазы) удовлетворить потребность животных

в фосфоре очень сложно. Следовательно, рационы для свиней разных пород, половозрастных групп и продуктивности нужно обогащать концентрированными фосфорными добавками минерального происхождения.

Существует вполне понятная ученым и практикам аксиома: без оптимального обеспечения животных фосфором трудно получить здоровых поросят, вырастить ремонтный молодняк, реализовать генетический потенциал поголовья и поддерживать воспроизводительную функцию свиноматок и хряков.

Фосфор — второй после кальция минеральный элемент по уровню накопления в организме и равнозначный ему в системе формирования костяка. У свиней почти 85% поступившего в кровь фосфора накапливается в костной ткани, 10% — в мышцах, менее 1% — в нервной

ткани, остальное его количество попадает во внутренние органы, мягкие ткани и биологические жидкости.


Наряду с кальцием фосфор играет важную роль в формировании костяка, но, в отличие от кальция, входит в структуру нуклеиновых кислот — носителей генетической информации, регулирующих биосинтез белка и работу иммунной системы животных. Фосфор — ключевой элемент, участвующий в образовании структуры макроэргических соединений — аденозинтрифосфата, аденозинмонофосфата и креатинфосфата.

Фосфор нормализует сорбцию через кишечную стенку многих питательных веществ, например глюкозы, которая всасывается только в виде глюкозофосфата после ее фосфорилирования. Без фосфора невозможен транспорт липидов и аминокислот. Этот минерал регулирует почечную экскрецию, активизирует ряд важнейших ферментов переаминирования, карбоксилирования, декарбоксилирования и фосфорилирования, а также формирует буферную систему крови и обеспечивает качество мышечной ткани свиней на откорме (недостаток фосфора в мышцах приводит к резкому ухудшению вкуса мяса).

В отличие от кальция фосфор легко проникает из межклеточного вещества в клетку, где его концентрация (доля от общего количества минеральных веществ) становится определяющей.

У свиней современных интенсивных генотипов (животные со среднесуточным приростом живой массы 800 г и более) потребность в фосфоре в 1,5-1,7 раза выше, чем у аналогов экстенсивных пород (их привесы менее 700 г в сутки). Вот почему грамотный подбор минеральных фосфорных добавок — основной фактор, который играет важную роль при балансировании рационов по макроэлементам.

Источники фосфора, используемые в кормлении свиней, представлены на рисунке.

								Таблица 1		
Свойства известных кормовых фосфатов кальция, используемых в рационах для свиней										
Кормовой фосфат	Концентрация, %				11.50/		Биологическая доступность, %			
	кальция	фосфора			рН 5%-го водного	Буферная емкость,				
		общего	растворимого в лимонной кислоте	растворимого в воде	экстракта	моль HCl/кг	кальция	фосфора		
Трикальцийфосфат, первый сорт	35	11–12	25	_	9,5-9,7	11–12	95	45		
Дефторфосфат	30-32	15–17	60	5-8	8,5-9	8,5-9,8	95	55		
Дикальцийфосфат	30	17–19	93	35	5,5–7	6–7	100	75		
Монокальцийфосфат	16	22–24	100	88	3,1	0,1-0,3	105	92		

Кальциевые фосфаты принято считать классическим видом добавок. В свиноводстве их применяют более 50 лет. Натриевые и аммонийные фосфаты, не содержащие кальция и богатые фосфором, сегодня широко не используют из-за того, что они высокореактивны и способны образовывать нераспадаемые комплексные соли с микроэлементами, входящими в состав премикса. Это приводит к блокированию его микроэлементной части, а у животных может спровоцировать токсикоз неопределенной этиологии. Аммонийные соли фосфора содержат большое количество аммиака, что при определенных условиях его расщепления в желудочно-кишечном тракте также приводит к отравлению.

Самыми надежными и безопасными минеральными добавками фосфора остаются кальциевые фосфаты. Нужно только правильно подобрать продукт и заключить договор на его поставку с хорошо зарекомендовавшим себя производителем. Основные характеристики фосфатов кальция приведены в таблице 1.

Из таблицы видно, что показатели технологических и биологических характеристик варьируют в зависимости от основности фосфатов. Трикальцийфосфат отличается от фосфатов других видов тем, что у него самая высокая щелочная реакция среды, колоссальная буферная емкость и он содержит усвояемый фосфор в минимальной концентрации. Это означает, что из каждых 100 г трикальцийфосфата, потребленных с кормом, в организме свиньи усвоится только 4,95—5,4 г фосфора.

По мере снижения основности (уменьшения доли кальция в фосфате) фосфат из щелочного превращается в кислый. Растворимость фосфата возрастает, и в кормосмеси пропор-

ционально повышается уровень общего фосфора. Очень важно, что вместе с увеличением содержания общего фосфора растет концентрация усвояемого фосфора. Его доля в 100 г монокальцийфосфата составляет 20,2—22,1 г, то есть в 4,1 раза больше, чем в 100 г трикальцийфосфата.

Анализ рынка фосфатов показывает, что ни при каких обстоятельствах трикальцийфосфат не будет в 4,1 раза дешевле, чем монокальцийфосфат. Поскольку в рационах для свиней фосфаты играют роль регулятора фосфора, с различными источниками фосфора (табл. 2).

Анализ таблицы показывает, что при замене монокальцийфосфата трикальцийфосфатом придется более чем в 2 раза повысить норму ввода фосфата. Такая замена обернется снижением энергетической и белковой питательности комбикорма, а главное, резким повышением его щелочности. Трикальцийфосфат связывает кислоты, следовательно, их выработка в желудке свиней усилится. Это означает, что при использовании трикальцийфосфата

Для выявления фальсификата достаточно смешать 1 л горячей (70 °С) дистиллированной воды и 100 г монокальцийфосфата. Если он плохо растворяется, а на дне сосуда образуется осадок с четкой границей, это свидетельствует о том, что продукт — подделка. Окончательные результаты получают после измерения рН раствора. Настоящий монокальцийфосфат дает кислую реакцию (рН ниже 6), а фальсифицированный — нейтральную или щелочную (рН более 6,5).

ответ на вопрос «Какой фосфат применять?» будет однозначным: монокальцийфосфат.

Благодаря низкой буферной емкости и идеальной растворимости в лимонной и соляной кислотах монокальцийфосфат имеет ряд преимуществ. Он обладает хорошей кислотосвязывающей способностью, совместим с любым по типу и свойствам кормовым подкислителем, не разрушает кислотный барьер желудочного сока в организме не только взрослых животных, но и новорожденных поросят (в их желудке соляная кислота отсутствует).

При вводе монокальцийфосфата в комбикорм появляется «дополнительное место» для других питательных компонентов. Все эти параметры учитывают при составлении рационов

дозировку подкислителя необходимо увеличить как минимум в 1,5 раза.

Включение фитазы в состав комбикорма позволяет значительно уменьшить норму ввода фосфатов. Однако ввод мела в рационы в первом случае (при обогащении кормосмеси монокальцийфосфатом) снижают, а во втором (при обогащении кормосмеси трикальцийфосфатом) — увеличивают.

Следует отметить, что при одновременном использовании трикальцийфосфата и фитазы кислотосвязывающая способность рациона может опуститься до 700 единиц, что не соответствует норме. По причине высокой буферности переваривание корма замедлится, а значит, снизится кислотный барьер желудочного сока в отношении большинства микроорганизмов, в том числе

Таблица 2 Рацион для поросят										
	Источник фосфора									
Показатель	Одноосновные фосфаты	Одноосновные фосфаты + фитаза	Трехосновные фосфаты	Трехосновные фосфаты + фитаза						
Доля в кормосмеси, %										
Пшеница	28	27,5	28,1	27,1						
Ячмень	10	12	10	12						
Кукуруза	30	30	30	30						
Шрот соевый (44% сырого протеина)	18	17,5	18	17,5						
Шрот подсолнечный (36% сырого протеина, 19% сырой клетчатки)	2,5	2,5	2,5	2,5						
Масло подсолнечное	2	2 2 2		2						
Дрожжи кормовые (44% сырого протеина)	5	5	5	5						
Монохлоргидрат лизина (98%)	0,2	0,1	0,2	0,1						
Монокальцийфосфат	1,3	1	_	_						
Трикальцийфосфат	_	_	2,8	2,2						
Мел кормовой	2	1,4	0,4	0,6						
Ферментный препарат	_	0,01	_	0,01						
Премикс КС-3 для поросят-отъемышей	1	1	1	1						
Итого	100	100	100	100						
	Концен	нтрация в 1 кг кормосмеси								
Обменная энергия, МДж/кг	13,2	13,4	13,1	13,1						
Питательный компонент, %:										
сухое вещество	86,02	85,89	85,99	85,91						
сырой протеин	18,08	18,13	18	18,03						
сырой жир	4,21	4,23	4,21	4,23						
сырая клетчатка	3,78	3,84	3,89	3,8						
Аминокислота, %:										
лизин	1,1	1,02	1,1	1,02						
метионин + цистин	0,59	0,6	0,59	0,59						
треонин	0,66	0,66	0,66	0,66						
Минерал, %:										
кальций	1,02	1,01	1,06	1,06						
фосфор	0,71	0,75	0,73	0,74						
фосфор усвояемый	0,49	0,5	0,47	0,49						
натрия хлорид	0,09	0,1	0,09	0,1						
Емкость связывания кислоты, мэк/кг	677	639	912	892						

болезнетворных. Именно поэтому при применении трикальцийфосфата растет риск контаминации желудочно-кишечного тракта поросят патогенной флорой. Это приводит к нарушению пищеварения, возникновению диареи и ухудшению сопротивляемости организма инфекциям различной этиологии.

С учетом того, что двойная порция трикальцийфосфата обойдется дороже, чем одна порция монокальцийфосфата, можно утверждать: использовать последний экономически выгодно.

В число продуктов, которые нередко фальсифицируют, входит и монокальцийфосфат. Недобросовестные производители разбавляют его мелом. Лабораторный анализ показывает, что в таких образцах содержание фосфора в золе, как правило, низкое, а кальция, наоборот, высокое. Известны случаи, когда в монокальцийфосфат добавляют трикальцийфосфат. Тогда концентрация фосфора будет уменьшаться непропорционально росту доли кальция.

Для выявления фальсификата достаточно смешать 1 л горячей (70 °C) дистиллированной воды и 100 г монокальцийфосфата. Если он плохо растворяется, а на дне сосуда образуется осадок с четкой границей, это свидетельствует о том, что продукт — подделка. Окончательные результаты получают после измерения рН раствора. Настоящий монокальцийфосфат дает кислую реакцию (рН ниже 6), а фаль-

сифицированный — нейтральную или щелочную (pH более 6,5).

Таким образом, доказано, что для удовлетворения потребности свиней в фосфоре целесообразно применять одноосновные фосфаты кальция. Уровень ввода фосфора в кормосмесь существенно снижается при использовании монокальцийфосфата. Оптимальную дозировку добавки для поросят и свиноматок рассчитывают при помощи специальных компьютерных программ. Доля монокальцийфосфата в комбикорме не должна превышать 1,5% от его массы (это практически в два раза меньше, чем при вводе трехосновных фосфатов или дефторированного фосфата). ЖР

Украина