Микроэлементы в рационах подсвинков

Использование хрома в форме наночастиц

Александр КРАВЧЕНКО, кандидат сельскохозяйственных наук **Василий ГОЛУШКО**, доктор сельскохозяйственных наук, профессор *НПЦ НАН Беларуси по животноводству* **Сергей АЗИЗБЕКЯН**

DOI: 10.25701/ZZR.2020.89.46.016

Рентабельность свиноводческих предприятий во многом зависит от способности свиней современных пород эффективно конвертировать питательные вещества корма в живую массу. Интенсивность метаболизма в организме животных повышается под воздействием биологически активных веществ — витаминов, минералов и др. Ввод в рационы микроэлементов позволяет улучшить качество свинины и субпродуктов.

Институт физико-органической химии НАН Беларуси

а протяжении последних десятилетий было проведено множество исследований с целью изучения свойств биологически значимых микроэлементов (в том числе хрома), используемых в кормлении свиней. В природе наиболее распространен трех- и шестивалентный хром, но живому организму полезен только трехвалентный хром, так как шестивалентный обладает выраженными окислительными свойствами и может оказывать токсическое действие (Salnikow K., Zhitkovich A., 2008).

Накоплены объективные данные об эффективности применения трехвалентного хрома в кормлении сельскохозяйственных животных, о его роли в углеводном и белковом обмене и о влиянии этого микроэлемента на функциональную активность инсулина.

Большинство научных работ посвящено изучению свойств трехвалентного хрома при его вводе в рационы в виде сульфатов, хлоридов и оксидов. Однако такие соединения хрома характеризуются низкой биодоступностью (в организме усваивается примерно 30% поступившего вещества), кроме того, между ними и другими биологически активными компонентами корма может возникать антагонизм (Околелова Т.М., Кулаков А.В., Молоскин С.А., Грачёв Д.М., 2002).

Сегодня ученые проводят исследования по использованию хелатных соединений хрома — пиколината хрома, аспаргината хрома, никотината хрома, хром-метионина и т.д. По сравнению с солями хрома (сульфаты, хлориды и оксиды) хром в хелатной форме лучше усваивается в тонком кишечнике (*Boleman S.L. et al.*, 1995; *Berner T.O., Murphy M.M.*, *Slesinski R.S.*, 2004). Ввод пиколината хрома (трехвалентный

хром + пиколиновая кислота) в рационы для свиней на завершающей стадии откорма способствует увеличению прироста мышечной ткани и снижению интенсивности синтеза жира (*Mooney K.W., Cromwell G.L.*, 1995). Единственный недостаток таких препаратов — высокая стоимость.

Сегодня очень актуальны исследования по применению в животноводстве микроэлементов в форме наночастиц. Биопрепараты нового поколения изготовляют в виде ультрадисперсных порошков металлов или их коллоидных растворов. При включении в рационы микроэлементов в форме наночастиц в организме животных активизируются физиологические и биохимические процессы. Благодаря тому что биопрепараты в форме наночастиц необходимо вводить в малых дозах, можно значительно уменьшить количество используемого микроэлемента и тем самым снизить себестоимость корма (Сайтханов Э.О., 2011; Ильичёв Е.А., 2012).

Мы провели исследования, чтобы оценить уровень мясной продуктивности молодняка свиней и определить физико-химические показатели мяса при вводе в рационы хрома в разной форме. Научно-хозяйственный эксперимент проходил в СПК «Первомайский» Минской области. Помесных подсвинков генотипа БКБ \times БМ (белорусская крупная белая \times белорусская мясная) методом пар-аналогов разделили на пять групп — контрольную и четыре опытные — по 16 голов в каждой.

Животных подбирали и распределяли по группам с учетом происхождения, пола и живой массы. Все подопытные получали основной рацион (полнорационный комбикорм СК-26 со стандартным премиксом КС-4-1) в виде смеси влажностью 57% (соотношение комбикорма и воды 1:1).

Поросятам первой опытной группы скармливали основной рацион с добавлением 0,5%-й смеси пшеничных отрубей и шестиводного хрома сернокислого $\mathrm{Cr_2(SO_4)_3}\,6\mathrm{H_2O}$ из расчета 4,16 мг чистого элемента на 1 кг сухого вещества (CB) комбикорма. В кормосмесь для животных второй, третьей и четвертой опытных групп вводили разработанную учеными Института физико-органической химии НАН Беларуси жидкую ультрадисперсную суспензию наночастиц хрома (концентрация — 1 г/л, размер частиц — 5—30 нм) в дозе 0,5; 0,05 и 0,02 мг на 1 кг CB комбикорма соответственно.

Подсвинки контрольной группы препаратов хрома не получали. Продолжительность опыта — 89 дней.

По окончании эксперимента произвели контрольный убой животных со средней живой массой (по 5 голов в каждой группе). После обескровливания полутуши выдерживали в холодильнике при температуре $2-4\,^{\circ}\mathrm{C}$ в течение 48 часов. Образцы мяса отбирали между 9-м и12-м грудным позвонком, где пролегает длиннейшая мышца спины (*Алимарданова М. К.*, 2009).

Морфологический состав туш и физико-химические показатели мяса определяли в соответствии с методическими рекомендациями ВАСХНИЛ (1978), уровень гликогена в образцах мышечной ткани и печени измеряли методом спектрофотометрии, содержание аминокислот в мышечной ткани — методом высокоэффективной жидкостной хроматографии (МВИ.МН 1363—2000), концентрацию хрома в пробах мышечной ткани, печени и почек — методом атомной спектрометрии.

Полученные данные обработали биометрически методом вариационной статистики ($Рокицкий \Pi.\Phi.$, 1973).

Мясные качества свиней оценивают по содержанию в туше основных тканей — мышечной, жировой и костной, а также по их соотношению. Пищевые и технологические свойства мяса и шпика зависят не только от генотипа, пола, возраста и живой массы свиней, но и от типа откорма и качества применяемых комбикормов (они должны быть сбалансированы по всем питательным и биологически активным веществам, в том числе по микроэлементам).

Данные исследования подтвердили, что использование в составе полнорационных комбикормов хрома сернокислого и хрома в форме наночастиц положительно повлияло на мясную продуктивность животных (табл. 1).

Установлено, что во всех опытных группах убойный выход (отношение убойной массы к предубойной живой массе животного после 24-часовой голодной выдержки) был примерно

Таблица Мясная продуктивности свиней						
	Группа					
Показатель	контрольная	опытная				
	контрольная	первая	вторая	третья	четвертая	
Масса, кг:						
предубойная	106,9	108,5	109,3	110,3	108,7	
парной туши	71,2	72,6	73,2	74,4	73	
внутреннего жира	2	1,77	1,82	1,93	1,82	
охлажденной туши	70,41	71,81	72,22	73,43**	72,02	
мяса	42,68	44,48**	44,42*	46,71**	44,36**	
сала	18,53	17,85	18,69	17,69	18,4	
костей	9,2	9,48	9,11	9,03	9,26	
Выход:						
убойный, %	68,5	68,6	68,6	69,2	68,8	
туши, %	66,6	66,9	67	67,4	67,2	
мякоти на 1 кг костей, кг	6,7	6,6	6,9*	7,1**	6,8	
Индекс мясности	4,6	4,7	4,9*	5,2**	4,8	
Площадь мышечного глазка, см²	40,9	41,8	47,1	48,6	49,7	
Толщина шпика, мм	31,3	31,1	31,7	33,4	30,8	
Содержание в туше, %:						
мяса	60,6	61,9	61,5	63,6*	61,6	
сала	26,3	24,9*	25,9	24,1*	25,5	
костей	13,1	13,2	12,6	12,3*	12,9	

^{*} $p \le 0.05$; ** $p \le 0.01$.

одинаковым — 68,5—69,2%, что считается хорошим показателем для помесных свиней генотипа БКБ \times БМ. Самый высокий убойный выход (69,2%) зафиксирован в третьей опытной группе, где в рационы для подсвинков включали хром в форме наночастиц (норма ввода — 0,05 мг/кг СВ комбикорма).

После обвалки и разделки туш изучили их морфологический состав и определили выход съедобной части и массу мышечной ткани (разность между массой полутуши и суммарной массой жира, кожи и костей). Высокой полномясностью характеризовались туши животных, получавших в составе рациона как хром сернокислый, так и хром в форме наночастиц.

Отмечено, что в первой опытной группе выход мяса в туше был на 1,8 кг, или на 4,2%, выше, чем в контрольной ($p \le 0,01$). Во второй, в третьей и четвертой опытных группах, где свиньи потребляли кормосмесь с хромом в форме наночастиц, выход мяса в туше оказался соответственно на 4,1; 9,4 и 3,9% выше, чем в контрольной ($p \le 0,05-0,01$).

На основании показателей морфологического состава туш рассчитали индекс мясности и количество мышечной ткани на 1 кг костей. Лучшие результаты зарегистрированы в третьей опытной группе: подсвинки, потреблявшие корм с наночастицами хрома по индексу мясности достоверно превосходили сверстников контрольной группы на 13% ($p \le 0,01$). В тушах животных третьей опытной группы было на 6% больше мякоти на 1 кг костей (7,1 кг), чем в тушах животных контрольной группы ($p \le 0,01$).

В числе методов оценки качества свинины и полномясности туши — определение площади мышечного глазка (измерение поперечного сечения длиннейшей мышцы спины между последним грудным и первым поясничным позвонком).

Установлено, что в тушах подсвинков первой опытной группы, потреблявших в составе рациона хром сернокислый, площадь мышечного глазка была на 2,2% больше, чем в тушах животных контрольной группы. Прослеживалась тенденция к увеличению средних значений площади мышечного глазка при снижении дозы наночастиц хрома в полнорационных комбикормах. Так, в тушах животных второй, третьей и четвертой опытных групп площадь мышечного глазка оказалась соответственно на 15,2; 19 и 21,6% больше, чем площадь мышечного глазка в тушах аналогов контрольной группы.

Толщина шпика в тушах свиней контрольной, первой, второй и четвертой опытных групп составляла 30,8-31,7 мм. В тушах животных третьей опытной группы толщина шпика достигала 33,4 мм, что на 6,7% больше, чем толщина шпика в тушах особей контрольной группы.

Общеизвестно, что качество свинины напрямую зависит от химического состава мышечной ткани и подкожно-жировой клетчатки. Цвет мяса — основной показатель, характеризующий интенсивность обменных процессов в организме животного. По активной кислотности (значение фиксировали через 24 часа после убоя) судили о том, какие пороки мяса могут проявиться в процессе его хранения (табл. 2).

Если интенсивность окраски мышечной ткани (показатель Гофо) варьирует от 45 до 54 единиц экстинкции, принято считать, что качество свинины удовлетворительное, от 55 до 64 — хорошее, 65 и более — очень хорошее. В наших исследованиях этот показатель превышал 65 единиц экстинкции во всех опытных группах. Наиболее интенсивный цвет имело мясо животных, которые получали хром в форме наночастиц. Самые высокие значения экстинкции были зарегистрированы

во второй и в третьей опытных группах (на 18,8% выше, чем в контрольной группе).

Активная кислотность (pH) отобранных образцов длиннейшей мышцы спины варьировала в пределах 5,18—5,47. Активная кислотность образцов длиннейшей мышцы спины подсвинков третьей и четвертой опытных групп была менее 5,4. Это свидетельствует о высокой интенсивности гликолиза, протекающего в мышечной ткани, что в свою очередь положительно сказывается на сроках хранения мяса. Показатель рН мяса подсвинков, получавших хром в форме наночастиц, колебался от 5,18 до 5,38, в то время как рН мяса животных, потреблявших корм с хромом сернокислым, составлял 5,47.

Потери мясного сока, содержавшегося в мышечной ткани животных первой, второй и третьей опытных групп, оказались достаточно высокими. Установлено, что при вводе хрома сернокислого (в нашем исследовании — 4,16 мг/кг СВ комбикорма) и хрома в форме наночастиц (0,5 мг/кг СВ комбикорма) потери мясного сока превышали 36%.

Влагоудерживающая способность мяса обусловливает его пригодность для технологической переработки и пищевую ценность продуктов, приготовленных из этого сырья. Во всех группах, где в комбикорм для животных вводили хром, влагоудерживающая способность мяса составляла 33,5—37,6%. При этом влагоудерживающая способность мяса подсвинков первой, второй, третьей и четвертой опытных групп была выше, чем влагоудерживающая способность мяса аналогов контрольной, соответственно на 6,04; 9,7; 5,56 и 8,02%.

Питательная ценность свинины определяется химическим составом мяса и шпика и соотношением мышечной, жировой и костной ткани в туше. Поскольку мышечная ткань богата белками и аминокислотами, она характеризуется наибольшей питательной ценностью. Технологические свойства мяса зависят от качества соединительной ткани, а калорийность и вкус — от качества жировой ткани.

Химический состав образцов мышечной ткани подсвинков отражен в таблице 3.

Данные химического анализа средних проб мяса показали, что в зависимости от нормы ввода препаратов хрома содержание влаги в мышечной ткани подсвинков опытных групп варьировало от 72,45 до 75,38%, а жира — от 5 до 6,08%. При использовании хрома в форме наночастиц содержание влаги и жира в образцах мышечной ткани снизилось.

Отмечено, что концентрация протеина в мышечной ткани животных второй, третьей и четвертой опытных групп была выше, чем в мышечной ткани аналогов контрольной и первой опытной групп. Следовательно, при применении хрома в форме наночастиц ценность мяса как пищевого продукта возрастает. Содержание протеина в мышечной ткани животных третьей и четвертой опытных групп (норма ввода хрома в виде наночастиц соответственно 0,05 и 0,02 мг/кг СВ комбикорма) оказалось наиболее высоким.

Данные химического анализа жировой ткани показали, что в средних пробах шпика подсвинков опытных групп влаги содержалось меньше, чем в средних пробах шпика аналогов контрольной группы, а жира — больше. Концентрация золы во всех образцах была практически одинаковой (0,07—0,08%).

Химический состав образцов жировой ткани отражен в таблице 4.

Отмечено, что в средних пробах жировой ткани животных первой, второй и третьей опытных групп содержание протеина

Таблица 2 Физико-химические показатели мяса						
Группа						
Показатель	контрольная	опытная				
		первая	вторая	третья	четвертая	
Цвет, единицы экстинкции	66,5	68,75	79*	79**	73,5	
рH	5,38	5,47	5,38	5,18	5,18	
Потери мясного сока, %	33,2	36,41	36,48	34,95	31,95	
Влагоудерживающая способность, %	27,94	33,98	37,64	33,5	35,96	

* $p \le 0.05$; ** $p \le 0.01$.

Таблица 3 Химический состав мышечной ткани, %					
Группа					
Содержание	VOUTDOR! UZG	опытная			
	контрольная	первая	вторая	третья	четвертая
Влага	75,34	75,38	74,07	73,25	72,45
Протеин	17,48	18,81	19,19	20,16	20,56
Жир	6,46	5	6,08	5,91	6
Зола	0,72	0,82	0,67	0,68	0,79

Таблица 4 Химический состав жировой ткани, %						
Группа						
Содержание	контрольная	опытная				
		первая	вторая	третья	четвертая	
Влага	10,51	7,34	7,45	6,55	6,62	
Протеин	2,08	2,5	2,79	2,29	1,82	
Жир	87,34	90,08	89,67	91,09	91,49	
Зола	0,08	0,08	0,08	0,07	0,08	

увеличилось. Например, в шпике подсвинков второй опытной группы (норма ввода хрома в форме наночастиц — $0.5~\rm Mr/kr$ СВ комбикорма) концентрация протеина была на 34.1% выше, чем в шпике сверстников контрольной группы. В то же время в средних пробах жировой ткани подсвинков четвертой опытной группы концентрация протеина снизилась на 12.5% по сравнению с аналогичным показателем, зафиксированным в контрольной группе. Такие большие колебания значений обусловлены тем, что в жировой ткани свиней содержится относительно мало протеина (менее 5%).

Темпы роста и продуктивность животных зависят от того, насколько хорошо развиты их внутренние органы, а также от того, как функционируют системы кровообращения, дыхания и пищеварения.

Мы определили массу сердца, печени, почек, легких и селезенки. Оказалось, что у подсвинков второй и третьей опытных групп сердце было развито лучше, чем у аналогов контрольной. Результаты взвешивания показали, что средняя масса сердца животных второй и третьей опытных групп превышала среднюю массу сердца сверстников контрольной группы на 13,5 и 8,1% соответственно.

Масса печени подсвинков контрольной группы была ниже по сравнению с массой этого органа аналогов опытных групп. Наибольшая масса печени была у животных, которые потребляли комбикорм с наночастицами хрома (норма ввода — 0.05~ мг/кг СВ корма). По этому показателю подсвинки третьей опытной группы превосходили сверстников контрольной на 21.3%. В то же время масса почек животных

KOPM/

Таблица 5 Масса внутренних органов, кг						
Группа						
Внутренние	ОПЫ			тная		
органы	контрольная	первая	вторая	третья	четвертая	
Сердце	0,37	0,33	0,42	0,4	0,36	
Печень	1,97	2,11	2,23	2,39	2,21	
Почки	0,46	0,44	0,41	0,42	0,4	
Селезенка	0,28	0,31	0,23	0,25	0,25	
Легкие	1,04	1,11	0,99	1,11	1,1	

Таблица 6 Содержание гликогена в печени и мышцах (n = 4), г							
	Группа						
Внутренние органы		опытная					
Органы	контрольная	первая	вторая	третья	четвертая		
Мышечная ткань	2,39	3,36	3,36	1,9	1,28		
Печень	53,16	55,28	43,63	36,13	33,83		

Таблица 7 Содержание хрома в продуктах убоя (n = 4), мг/кг						
	Группа					
Показатель	контрольная	опытная				
		первая	третья			
Мышечная ткань	0,3	0,15	0,03			
Печень	0,22	0,15	0,45			
Почки	0,05	0,04	0,07			

опытных групп была ниже, чем масса почек аналогов контрольной.

По массе селезенки подсвинки первой опытной группы превосходили сверстников контрольной, второй, третьей и четвертой опытных групп. Однако масса селезенки животных второй, третьей и четвертой опытных групп оказалась на 0,03—0,05 г ниже, чем масса селезенки особей контрольной группы.

По результатам взвешивания установлено, что наименьшая масса легких была у подсвинков контрольной и второй опытной групп. Масса легких животных первой, третьей и четвертой опытных групп была примерно одинаковой — в среднем $1.1~\rm kr$, что на 6.7% больше, чем масса легких аналогов контрольной группы.

Показатели массы внутренних органов подопытных свиней представлены в **таблице 5**.

В научной литературе опубликованы данные исследований, подтверждающих, что хром влияет на отложение гликогена в печени и мышечной ткани. Поскольку от этого углевода зависит качество свинины, мы определили его концентрацию в печени и мышцах подопытных животных (табл. 6).

Установлено, что в средних пробах мышечной ткани животных первой и второй опытных групп концентрация гликогена была выше, чем в средних пробах мышечной ткани аналогов контрольной, третьей и четвертой опытных групп, соответственно на 28,8; 43,4 и 61,9%. В мышечной ткани подсвинков третьей и четвертой опытных групп содержалось на 20,5 и 46,6% меньше гликогена, чем в мышечной ткани сверстников контрольной.

В средних пробах ткани печени животных, потреблявших комбикорм с хромом в виде наночастиц, концентрация гли-

когена была меньше, чем в средних пробах ткани печени аналогов контрольной и первой опытной групп. Самое высокое содержание гликогена зафиксировано в средних пробах ткани печени подсвинков, которым скармливали кормосмесь с сернокислым хромом, — 55,28 г (на 2,12 г, или на 3,98%, больше, чем в тканях печени животных контрольной группы).

Можно предположить, что концентрация гликогена в мышцах и печени зависит от таких факторов, как форма и норма ввода хрома в рационы для свиней. Относительно низкое содержание гликогена в мышцах и печени подсвинков третьей и четвертой опытных групп обусловлено высокой интенсивностью азотного и углеводного обмена.

Из научной литературы известно, что при уменьшении концентрации глюкозы в крови организм с помощью ферментов расщепляет отложенный в депо гликоген, в результате чего в мышечной ткани восполняется дефицит глюкозы, которая затем расходуется на образование белка. При повышении ее уровня в крови происходит гликогенез и гликоген откладывается в печени.

Общеизвестно, что концентрация минеральных биоэлементов в тканях и органах здоровых животных относительно постоянная, следовательно, средние значения могут служить точкой отсчета при определении минерального статуса организма свиней и при оценке полноценности их минерального питания.

Использование микроэлементов в кормлении животных — необходимое условие достижения высоких показателей продуктивности и снижения расхода корма. Нужно учитывать, что при вводе в комбикорм каких-либо жизненно важных микроэлементов в дозе, значительно превышающей рекомендованную, минералы накапливаются в тканях и органах. После убоя животных в сырье и продуктах переработки могут присутствовать микроэлементы в повышенной концентрации.

Показатели содержания хрома в продуктах убоя, полученных в контрольной и опытных группах, представлены в **таблице 7**.

Результаты исследования подтвердили, что в мышечной ткани, печени и почках подсвинков, которые потребляли комбикорм с хромом сернокислым, этого микроэлемента содержалось меньше, чем в мышечной ткани, печени и почках аналогов контрольной группы. При использовании хрома в форме наночастиц (норма ввода — $0.05 \, \mathrm{mr/kr}$ СВ комбикорма) его концентрация в мышечной ткани была ниже на 90%, а в печени и почках — выше соответственно на $104.5 \, \mathrm{u}$ 40% по сравнению с аналогичным показателем особей контрольной группы.

Аномальное распределение хрома в тканях и существенная вариабельность показателей объясняются небольшой выборкой, а также тем, что в тканях хром присутствует в предельно малых остаточных количествах (0,5 мг/кг). Тем не менее полученная свинина соответствовала гигиеническим требованиям безопасности продовольственного сырья и пищевых продуктов.

Таким образом доказано, что включение хрома в форме наночастиц в рационы для молодняка свиней на откорме способствует повышению выхода мышечной ткани и концентрации в ней протеина, а также увеличению площади мышечного глазка и толщины шпика. Рекомендованная норма ввода хрома в форме наночастиц составляет 0,05 мг на 1 кг СВ комбикорма.

Республика Беларусь