Повышаем устойчивость бройлеров к тепловому стрессу

Вводим в рационы фитогенные кормовые добавки

Птица современных мясных кроссов характеризуется высокими привесами и отличной конверсией, но при этом очень плохо переносит избыточное тепло. Содержание бройлеров в помещениях, где температура значительно превышает норму, отрицательно влияет на продуктивность, состояние желудочно-кишечного тракта (ЖКТ), иммунную реакцию и качество мяса. Кормовые добавки (в эту группу входят и фитогенные препараты), которые включают в рацион для уменьшения воздействия на птицу теплового стресса, как правило, обладают выраженными антиоксидантными свойствами. При этом фитогенным добавкам отводят ведущую роль.

Тепловой стресс

Птицы — теплокровные животные с постоянной температурой тела. Температура окружающей среды, при которой птица чувствует себя комфортно, составляет 18—30 °С. Верхний температурный предел в значительной степени варьирует в зависимости от относительной влажности воздуха (этот показатель выражают в процентах). Чем выше относительная влажность воздуха, тем ниже верхний температурный предел, тем ощутимее тепловой стресс влияет на продуктивность бройлеров и яйценоскость курнесушек.

На способность цыплят переносить тепловой стресс влияют возраст родительского поголовья и условия выращивания. До тех пор пока температура окружающей среды ниже, чем температура тела цыпленка, его организм успешно справляется с перегревом: отдача избыточного внутреннего тепла осуществляется через кожу, в том числе за счет активизации периферического кровообращения.

При перегреве поведение птицы заметно меняется, благодаря чему тепловой баланс в ее организме восстанавливается. Так, при повышении температуры воздуха бройлеры стоят, почти не двигаясь, либо располагаются вдоль стен или вокруг поилок и замирают. Часто они расправляют крылья, чтобы улучшить теплоотдачу. Также при тепловом стрессе повыша-

КОРМА

ется частота дыхания, что сопровождается гипервентиляцией и интенсивным выделением углекислого газа из организма.

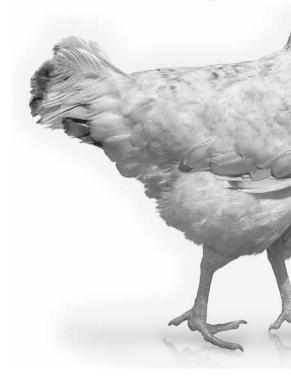
Последствия теплового стресса

Один из признаков теплового стресса у бройлеров — снижение потребления корма. В результате при продолжительном перегреве среднесуточные приросты живой массы уменьшаются на 30%. Основная же причина снижения потребления корма — оксидативный стресс. При длительном воздействии теплового стресса в плазме крови птицы возрастает концентрация кортизона, а уровень гормона щитовидной железы, наоборот, падает (Sohail et al., 2010).

Вследствие увеличения содержания в плазме крови кортизона активизируются катаболизм и пероксидное окисление липидов в мышечных тканях, о чем свидетельствует повышение содержания малонового диальдегида в грудных мышцах бройлеров (*Zhang et al.*, 2011). Azad и соавт. (2009) установили, что пероксидное окисление липидов в грудных мышцах усиливается при повышении уровня теплового стресса в последние две недели перед убоем. Эти же исследователи отмечают, что ректальная температура цыплят, подвергшихся тепловому стрессу, была примерно на 2 °C выше, чем ректальная температура аналогов, находившихся в зоне температурного комфорта.

Результаты экспериментов Niu и соавт. (2009) и Song и соавт. (2014) свидетельствуют о том, что тепловой стресс также влияет на иммунную реакцию организма птицы и на состояние ее ЖКТ. Ухудшение состояния ЖКТ обусловлено пероксидным окислением липидов в энтероцитах.

Gu и соавт. (2012) отмечают, что белки теплового шока (от англ. Heat Shock Proteins, HSP), входящие в группу HSP70 (высококонсервативные белки, участвуют в защите и восстановлении клеток), играют главную роль (организм легче реагирует на тепловой стресс). HSP стимулируют деятельность ферментов-антиоксидантов, которые минимизируют оксидативный ущерб, причиняемый клеткам слизистой оболочки кишечника при тепловом стрессе.


Исследователи предположили, что тепловой стресс, оказывающий отрицательное влияние на ЖКТ птицы, может спровоцировать развитие бактериального энтерита, привести к воспалению кишечника и стать причиной увеличения уровня бактериальной обсемененности тушек птицы (Quanteiro-Filho et al., 2012).

Воппеtt и соавт. (1997) сообщают, что при тепловом стрессе ухудшается переваримость и усвояемость питательных веществ, вследствие чего в рацион приходится вводить легкоусвояемые ингредиенты либо кормовые добавки, способствующие повышению усвояемости питательных веществ корма.

Стратегия кормления, направленная на снижение теплового стресса

Как было отмечено выше, при тепловой нагрузке усвояемость питательных веществ рациона ухудшается. Тем не менее при повышении концентрации питательных веществ в кормосмеси затраты энергии на ее потребление снижаются. Это означает, что при скармливании такой кормосмеси и высококачественного покупного комбикорма бройлеры затрачивают одинаковое количество энергии. Несмотря на то что ограничение количества белка в рационе и оптимизация аминокислотного баланса позволяют достоверно уменьшить затраты энергии на выделение из организма избыточного азота, в том числе с фекалиями, прямое воздействие теплового стресса на оптимальный аминокислотный баланс до сих пор не изучено.

Gous (2010) установил, что при увеличении в кормосмеси доли жиров путем уменьшения доли углеводов выделение из организма тепла в ходе обмена веществ замедляется. Такого эффекта можно достичь даже при использовании рационов, в состав которых входят традиционные ингредиенты. В большинстве хозяйств применяют общепринятый метод выращивания бройлеров, согласно которому за 4-6 часов до наступления самого жаркого времени суток птице перестают давать корм. Однако следует учитывать, что при таком перерыве в кормлении положительного эффекта добиваются только тогда, когда тем-

пература окружающей среды ночью существенно ниже, чем днем (циклический тепловой стресс). Потребляя корм в более прохладное время суток, птица компенсирует дефицит питательных веществ.

Бройлеры, находящиеся под воздействием теплового стресса, стараются улучшить терморегуляцию путем учащения дыхания. При этом из организма птицы выделяется почти 80% избыточного тепла (Van Kampen, цит. по: *Gous*, 2010). Поскольку при учащении дыхания увеличиваются потери углекислого газа, организм птицы получает поддержку за счет более высокого соотношения катионов и

В научной литературе помимо данных об оптимизации состава и структуры рациона есть информация о специализированных кормовых добавках или об определенных классах кормовых добавок, применение которых позволяет купировать тепловой стресс и (или) минимизировать его последствия.

В некоторых работах указано, что эффективность таких добавок обусловлена их антиоксидантными свойствами. Глютаминовая кислота считается незаменимой аминокислотой. Отмечено, что при включении ее в рацион бройлеры легче переносили тепловой стресс, а кроме того, увеличивались приросты их живой массы и улучшалось качество мяса. При этом

ПТИЦЕВОДСТВО

КОРМА

эффективность откорма птицы напрямую зависела от дозировки глютамина (*Dai et al.*, 2009).

Результаты исследований Gu и соавт. (2012) подтвердили, что при потреблении корма с глютамином в слизистой оболочке тощей кишки птицы, подвергавшейся сильному тепловому стрессу, повысилась экспрессия HSP70 (они защищают слизистую оболочку ЖКТ от повреждения) и выросло содержание ферментов-антиоксидантов.

Данные экспериментов Yesilbag и соавт. (2011) свидетельствуют, что благодаря повышению антиоксидантного статуса организма бройлеров, получавших в составе рациона розмарин или его эфирные масла, улучшилось качество мяса и увеличилась продолжительность сроков его пригодности для использования.

Фитогеники — природные кормовые добавки

Фитогенные кормовые добавки это продукты, которые производят из растительного сырья. Применение таких добавок помогает решать проблемы, с которыми птицеводческие и животноводческие хозяйства сталкиваются сегодня и могут столкнуться в будущем. Многие растения (например, тимьян и орегано) оказывают выраженное антиоксидантное действие, благодаря чему улучшается снабжение клеток питательными веществами, усиливается защита клеток от оксидативного стресса, а также снижается вредное воздействие бактерий и оксидативного стресса. Все это способствует улучшению общего состояния животных и птицы и позволяет более полно реализовать их генетический потенциал.

При использовании фитогеников повышается устойчивость птицы к

тепловому стрессу. Именно на этом необходимо сосредоточить внимание при разработке добавок на основе природных компонентов. Антиоксидантные свойства многих растений, особенно тех, которые относятся к семейству губоцветных (розмарин, тимьян, орегано и шалфей), изучали на протяжении длительного периода (Brenes, Roura, 2010). Было установлено, что антиоксидантные свойства этих растений обусловлены наличием в них фенольных соединений и нефенольных веществ, стимулирующих выработку ферментов-антиоксидантов (Mueller et al., 2012).

РІасһа и соавт. (2014) отмечают, что при вводе тимьянового масла в кормосмесь для бройлеров антиоксидантный статус тканей и целостность слизистой оболочки кишечника повышаются, а концентрация малонового диальдегида в энтероцитах снижается. В состав фитогенной кормовой добавки Biostrong® 510 входят эфирные масла, травы, пряности и сапонины. Исполь-

зование Biostrong® 510 положительно влияет на морфологию тканей кишечника бройлеров. Ввод такой добавки в рационы для птицы способствует выработке в организме ферментов-антиоксидантов, в результате чего заметно улучшается усвояемость питательных веществ (*Amad et al.*, 2013).

Полезные свойства (в частности, антиоксидантное действие и способность повышать усвояемость питательных веществ) фитогенных добавок сегодня доказаны. Следовательно, они обладают большим потенциалом для того, чтобы войти в число препаратов нового поколения, использование которых помогает улучшить состояние здоровья сельскохозяйственных животных и птицы. Несомненно, в ближайшее время фитогенные кормовые добавки станут ключевым инструментом в профилактике теплового стресса в птицеводстве, а их применение внесет существенный вклад в повышение рентабельности хозяйств.

Более полную информацию о фитогенных природных кормовых добавках (например, Biostrong® 510), которые используют для профилактики теплового стресса, можно получить у специалистов компании «Каргилл».

Официальный дистрибьютор «Делакон» (DelaconTM) в России — компания «Каргилл» (торговая марка Provimi®).

Позвоните или напишите нам:

тел.: +7 (495) 213-34-12 • e-mail: provimi moscow@cargill.com

Delacon BIOSTRONG® 510

Природная кормовая добавка для роста экономики Вашего птицеводческого предприятия

- состоит только из растительных экстрактов

- предназначена для всех категорий птицы (несушек, бройлеров, индюшек, уток и др.)

Biostrong® 510:

- улучшение усвояемости питательных веществ
- улучшение конверсии корма
- поддержка желудочно-кишечного тракта в здоровом состоянии
- значительное уменьшение производства аммиака в организме и его содержания в окружающей среде

Официальный дистрибьютор «Делакон» (Delacon $^{\text{TM}}$) в России — компания «Каргилл» (торговая марка Provimi $^{(8)}$). 125167, Москва, Ленинградский проспект 37, корпус 9, подъезд 2

