Нормируем потребность коров в протеине

Олег ГАНУЩЕНКО, кандидат сельскохозяйственных наук Витебская ГАВМ

DOI: 10.25701/ZZR.2023.11.11.010

В развитии АПК Беларуси приоритетное направление — производство молока. Его получают от высокопродуктивных коров, которым скармливают в составе рационов качественные травяные корма. Ученые и специалисты совершенствуют технологии, применение которых позволит значительно повысить эффективность молочного скотоводства за счет выпуска конкурентоспособной продукции, обеспечить бесперебойное снабжение сырьем перерабатывающей промышленности, а также существенно увеличить объем экспорта. Чтобы выйти на запланированные показатели, в ближайшие пять лет и в дальнейшем необходимо работать над повышением продуктивности коров.

В 2022 г. в число лучших хозяйств республики вошли УП «Молодово-агро» Брестской области, СПК «Лариновка» Витебской области, СПК Деньщикова и СПК «Свислочь» Гродненской области. Среднегодовой удой там составил более 12 т на голову. Однако в Беларуси немало предприятий, где годовые удои почти в два раза ниже. Вот почему очень важно создавать прочную кормовую базу и организовывать биологически полноценное питание скота. Согласно результатам исследований, проведенных отечественными и зарубежными учеными, молочная продуктивность на 60–70% зависит от уровня кормления животных, на 15–20% — от условий их содержания и только на 15–25% обусловлена генетическими факторами.

Общеизвестно, что с ростом продуктивности повышаются требования к полноценности кормления коров с учетом их потребности в питательных веществах. При дефиците даже одного из них в организме жвачных животных нарушается обмен веществ и хуже усваиваются другие элементы питания. Все это ведет к перерасходу кормов, снижению удоев, продуктивного долголетия коров, ухудшению качества молока. Следовательно, главную роль должно играть комплексное балансирование рационов. Важно также понимать, что прирост среднегодового удоя из расчета на 1 т молока гораздо проще реализовать у низкопродуктивных коров (3—4 тыс. кг/гол.), чем у высокопродуктивных особей (более 10 тыс. кг/гол.).

Максимальной эффективности использования кормов достигают лишь при условии организации дифференцированного кормления животных сбалансированными полнорационными смесями, содержащими адресные комбикорма в зависимости от физиологического состояния и уровня продуктивности поголовья. Расчет более точных норм потребности

в питательных веществах и использование их для эффективного балансирования кормосмесей позволяет полнее реализовать генетический потенциал скота, уменьшать затраты корма на единицу продукции, поддерживать здоровье коров и продлевать период их хозяйственного использования. Ученые НПЦ НАН Беларуси по животноводству опубликовали справочник «Нормы кормления крупного рогатого скота» (Попков Н.А. и др., 2011), в котором приводят достаточно широкий спектр показателей питательности. В России вышла монография «Нормы потребности молочного скота и свиней в питательных веществах» (Некрасов Р.В., Головин А.В., Махаев А.Е., 2018). Существенный недостаток указанных изданий — отсутствие в них четкой дифференциации норм кормления дойных коров в зависимости от физиологического состояния. Для дальнейшего наращивания удоев многие производители молока вынуждены использовать современные зарубежные нормы кормления, в которых предусмотрена такая дифференциация. Несмотря на массовое распространение интернета, современные зарубежные нормы далеко не всегда доступны для животноводов. Новейшие нормы кормления обычно представлены не как полнотекстовое издание, а как его демонстрационная, усеченная версия.

В странах с развитым молочным скотоводством научные подходы к нормированию отдельных питательных веществ совершенствуются постоянно. Количественные значения, характеризующие потребность животных в традиционных элементах питания, уточняются, а спектр нормируемых показателей для высокопродуктивных коров расширяется.

В некоторых государствах с начала XXI в. не только нормируют новые показатели углеводного питания (физически эффективная нейтрально-детергентная клетчатка, стабильный в рубце крахмал, легкоферментируемые в рубце углеводы и пр.), но также применяют усовершенствованные тесты для оценки протеиновой характеристики кормов и рационов (баланс азота в рубце, обменный, доступный, эндогенный протеин и пр.).

В конце 2021 г. Национальная академия наук, инженерии и медицины США (NASEM, ранее NRC) опубликовала новые нормы «Потребность молочного скота в питательных веществах» (8-е издание). Цель — повысить точность прогнозирования продуктивности животных на основе оптимизации потребляемых ими питательных веществ с учетом влияния различных факторов.

Новые требования к оптимальной концентрации обменной энергии (ОЭ), питательных и биологически активных веществ в 1 кг сухого вещества (СВ) рационов для дойных, стельных сухостойных коров и ремонтных телок голштинской породы отражены в таблице 1.

	Конце	ентрация з	энергии, г	титательн	ых и биол	огически	активных	вешеств	в 1 кг СВ ј	рационов		Ta	аблица 1
			,	Коровы									
Показатель	первотелки			взрослые		стельные сухостойные		Ремонтные телки					
Показатель	День ла			ктации		Время до отела, дни		Возраст, дни					
	15	150	20	100	200	60-21	< 21	30	100	225	350	475	600
Живая масса, кг	57	70		700		74	40	65	120	230	330	420	530
Среднесуточный прирост живой массы, кг	_	_	_	_	_	_	_	0,7	0,7	0,9	0,8	0,7	0,9
Удой, кг в сутки	33	39	53	55	43	_	_	_	_	1	_	-	_
Содержание, %:													
жира	3,9	3,6	3,7	3,5	3,8	_	_	_	_	_	_	_	_
белка	3,1	3	2,8	2,8	3,3	_	_	_	_	_	_	_	_
Потребление СВ:													
кг в сутки	20,8	23,9	25,8	29,4	27,4	13,9	12,3	1,4	3,9	6,6	8,5	9,8	11
% от массы коровы	3,6	4,2	3,7	4,2	3,9	1,9	1,7	2,15	3,25	2,9	2,6	2,3	2,1
03:													
Мкал	2,39	2,61	2,58	2,73	2,6	1,93	2,25	3,68	2,26	2,09	1,95	1,92	2,12
МДж	10	10,93	10,8	11,43	10,88	8,08	9,42	15,4	9,46	8,75	8,16	8,04	8,87
Чистая энергия лактации:			-,-	,	.,	.,		-,-	,				.,
Мкал	1,58	1,72	1,7	1,8	1,73	1,28	1,49	_	_	_	_	_	_
МДж	6,62	7,2	7,12	7,54	7,24	5,36	6,24	_	_	_	_	_	_
Протеин, г:	0,02	7,2	7,12	7,54	7,27	3,30	0,27						
сырой	162	170	175	174	175	119	143	210	166	144	126	117	127
расщепляемый в рубце	100	100	100	100	100	100	100	_	100	100	100	100	100
нерасщепляемый в рубце	62	70	75	74	75	19	43	_	66	44	26	17	27
обменный	98	98	109	102	101	52	67	165	95	81	68	61	140
	90	96	109	102	101	52	07	105	95	01	00	01	140
НДК, г (мин.):	250 220	050 220	250 220	050 220	050 220	250 220	050 220		250 220	050 220	050 220	050 220	050 220
рациона	250-330	250–330	250-330	250-330	250–330	250–330	250–330	_	250–330	250-330	250-330	250-330	250–330
фуража	190-250	190-250	190-250	190-250	190-250	190-250	190-250	_	190-250	190-250	190-250	190-250	190-250
Крахмал, г (макс.)	220–300	220-300	220-300	220-300	220–300	150-200	150–200	_	150–200	150-200	150-200	150–200	150-200
Макроэлемент, г:													
кальций	5,7	5,7	6,4	6	5,8	3,1	3,9	5,9	7,8	5,8	4,4	3,7	3,9
фосфор	3,5	3,5	3,9	3,7	3,5	1,9	2,1	4,5	3,2	2,6	2,1	1,8	1,9
магний	1,7	1,7	1,8	1,8	1,7	1,3	1,4	1,5	1,4	1,2	1,2	1,2	1
калий	10,3	9,7	11	10	9,9	6,2	6,9	10	5,1	5,2	5,4	5,6	6
натрий	2,1	2,1	2,3	2,2	2,1	1,6	1,7	3,5	1,7	1,6	1,6	1,5	1,6
хлор	2,9	3	3,4	3,2	2,9	1,3	1,4	2,8	1,4	1,4	1,3	1,3	1,3
сера	2	2	2	2	2	2	2	_	2	2	2	2	2
Катионно-анионный	148	130	157	135	137	66	-100	_	39	42	45	50	60
баланс, мэкв (мин.)	140	130	13,	133	13,	00	100		33	1.2	,5	30	- 50
Микроэлемент, мг:													
медь	9	8	10	8	10	18	19	5	16	16	15	15	17
кобальт	0,2	0,2	0,2	0,2	0,2	0,2	0,2	_	0,2	0,2	0,2	0,2	0,2
йод	0,46	0,42	0,47	0,42	0,41	0,51	0,54	0,78	0,69	0,58	0,54	0,53	0,54
железо	16	16	21	19	16	13	15	90	61	46	32	24	28
марганец	28	26	31	28	27	38	43	50	49	44	40	38	43
селен	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3	0,3
цинк	57	58	66	62	61	30	32	70	47	41	36	34	35
Витамин, МЕ:													
A	3021	2796	3687	3303	3103	5850	6630	5218	3390	3829	4265	4698	5288
D	1099	954	1085	952	1021	1595	1810	1518	924	1044	1163	1281	1442
	1000	554	1005	932	1021	1393	1010	1510	JLT	1044	1105	1201	

В таблице 1 значения концентрации разных элементов питания максимально адаптированы к отечественным показателям: единицы измерения энергии указаны не только в мегакалориях (Мкал), но и в мегаджоулях (МДж); уточнена расчетная норма суточного потребления СВ в % от массы коровы, а потребность в нормируемых элементах питания приведена из расчета на 1 кг СВ рациона. Не составляет большого труда рассчитать ориентировочную суточную норму кормления

коров в зависимости от их живой массы и физиологического состояния.

Приведу пример расчета суточной нормы кормления взрослой коровы живой массой 600 кг с суточным удоем 50 кг в конце первой фазы лактации (с 90-го по 100-й день). Исходя из данных таблицы 1, суточное потребление CB с учетом фактической живой массы 600 кг должно составлять около 25 кг $(4,2\% \times 600:100)$. В 25 кг CB должно содержаться 286 МДж ОЭ

 $(11,43~{\rm MДж~O})$ кг СВ × 25 кг СВ), 4350 г сырого протеина (174 г/кг СВ × 25 кг СВ), в том числе 2500 г расщепляемого в рубце протеина (100 г/кг СВ × 25 кг СВ) и 1850 г нерасщепляемого в рубце протеина (74 г/кг СВ × 25 кг СВ). В сутки животному также потребуется 2550 г обменного протеина (102 г/кг СВ × 25 кг СВ), 7500 г нейтрально-детергентной клетчатки (300 г/кг СВ × 25 кг СВ), в том числе не менее 4750 г входящей в состав основных (травяных) кормов структурной нейтрально-детергентной клетчатки (190 г/кг СВ × 25 кг СВ) и т.д.

В Беларуси при массовой голштинизации скота грамотное выращивание ремонтных телок в ближайшей перспективе позволит максимально реализовать генетический потенциал интенсивности роста животных в первые 5—6 месяцев жизни, управлять приростом живой массы в дальнейшем, поддерживать здоровье в ранний период жизни, а в итоге — повысить экономическую эффективность отрасли.

Зарубежная практика показала, что при выращивании ремонтных телок голштинской породы важно достичь следующих целевых показателей живой массы:

- за первые 56 дней жизни удвоение живой массы по отношению к живой массе при рождении и повышенная интенсивность роста вплоть до начала полового созревания;
- в период осеменения 400—450 кг;
- перед первым отелом, в возрасте 24 месяцев не менее 600 кг.

Сегодня однозначно доказано, что недостаточная живая масса перед отелом — главная причина низких удоев в первую лактацию. При живой массе менее 560 кг каждый дефицитный килограмм живой массы по отношению к указанному показателю приводит к уменьшению молочной продуктивности до 6 кг за первую лактацию. С другой стороны, ожирение нетелей (телок перед отелом) также недопустимо, поскольку неизбежно приводит к резкому снижению потребления кормов после отела и к развитию кетоза. Таким образом, при правильном кормлении перед отелом нетели должны быть высокорослыми и крупными (живая масса не менее 560—600 кг), а их упитанность составлять 3—3,5 балла по пятибалльной шкале.

В соответствии с современными американскими нормами кормления молочного скота (NASEM, 2021), живая масса телочек голштинской породы в возрасте одного месяца должна достигать 65 кг, а уровень потребления ими CB рациона — не менее 1,4 кг (см. табл. 1). Указанное количество CB эквивалентно 11,2 кг цельного молока (1,4 кг CB: 0,125 кг CB в 1 кг цельного молока = 11,2 кг).

Приведу пример расчета суточной нормы кормления телок живой массой 120 кг в возрасте 3,5 месяца (100—105-й день жизни). В соответствии с данными таблицы 1 суточное потребление CB составляет около 3,9 кг. В этом количестве CB должно содержаться 37 МДж ОЭ (9,46 МДж ОЭ/кг CB \times 3,9 кг CB), 647 г сырого протеина (166 г/кг CB \times 3,9 кг CB), в том числе 390 г расшепляемого в рубце протеина (100 г/кг CB \times 3,9 кг CB) и 257 г нерасшепляемого в рубце протеина (66 г/кг CB \times 3,9 кг CB). Животному также потребуется 371 г обменного протеина (95 г/кг CB \times 3,9 кг CB), около 1170 г нейтрально-детергентной клетчатки (300 г/кг CB \times 3,9 кг CB), не менее 741 г содержащейся в основных (травяных) кормах структурной нейтрально-детергентной клетчатки (190 г/кг CB \times 3,9 кг CB) и т.д.

В восьмом издании справочника NASEM полностью пересмотрена система удовлетворения потребности молочного

скота в протеине (аминокислотах). Основные изменения касаются норм потребности в сыром, расщепляемом и нерасщепляемым в рубце, протеине. Почти все показатели кардинально обновлены. При этом среди всех нормируемых показателей протеинового питания коров ключевую роль отводят обменному, так называемому метаболизируемому протеину.

Термин «обменный протеин» в отечественной научной литературе практически не встречается. Напомню о том, какие термины для характеристики протеина используют в Беларуси и в России. В составе кормосмеси корова получает сырой протеин. При зоотехническом анализе определяют так называемые сырые вещества. В этой фракции корма наряду с протеином содержится небольшое количество сопутствующих веществ.

Протеин (от греч. *protos* — первый, главный, важнейший) имеет первостепенное значение, так как его нельзя заменить другими питательными веществами. Белки (обычно бо́льшая часть протеина кормов) — носители жизни на земле.

В организме животных протеин кормов может служить источником энергии. В животноводстве эта функция протеина не основная, поскольку главными источниками энергии в рационе считаются углеводы и жиры. К тому же, как показали данные исследований, в организме эффективность использования протеина на энергетические цели в 1,3 раза ниже, чем на производство продукции. Связано это с тем, что конечным продуктом протеинового обмена является мочевина. Несмотря на то что мочевина обладает потенциальной энергией, она выводится из организма. При отложении азота в продукции (в молоке — в виде белков, состоящих из остатков отдельных аминокислот, а в составе прироста живой массы — в виде белков мышечной ткани) такого не происходит. В небольшом количестве протеин также может депонироваться в тканях и использоваться как резервный.

Доказано, что суточный удой коров на 25—30% зависит от концентрации в рационе сырого протеина и от его качества (растворимость и расщепляемость в рубце, аминокислотный состав нерасщепляемого в рубце протеина, содержание обменного протеина и др.). К сырому протеину (в зарубежной интерпретации — сырой белок) относят все азотсодержащие вещества кормов — белки (в зарубежной интерпретации — истинный белок) и амиды (небелковые азотистые соединения).

Белки — высокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединенных в цепочку пептидной связью. Белки участвуют во всех жизненно важных процессах — размножении, росте, развитии и т.д. В организме лактирующих коров белок расходуется главным образом на поддержание жизни, образование молока, прирост массы плода. Амиды включают в себя свободные аминокислоты (самый ценный их представитель), амины (органические соединения, производные аммиака), соли аммония, нитраты, нитриты и др.

В состав растворимого в рубце протеина кормов входят амиды и быстрорастворимые белки. Их главное предназначение — синтез микробного белка в рубце. Показатель «растворимый протеин», как правило, выражают в процентах от концентрации сырого протеина. Микроорганизмы рубца поглощают растворимый протеин в виде аммиака либо полностью (при оптимальных условиях), либо частично (при избытке быстрорастворимых фракций протеина). Во втором случае оставшаяся часть протеина проходит через стенки рубца и всасывается в кровь в виде аммиака.

Таблица 2 Эффективность использования азота в организме коров при снижении в рационах доли сырого протеина

Показатель	Рацион						
Показатель	исходный	оптимизированный					
Стадо А							
Содержание сырого протеина, %	17,5	16,6					
Потребление азота, г/гол./сут.	697	641					
Среднесуточный удой, кг/гол.	35,8	36,3					
Массовая доля в молоке, %:							
белка	3,03	3,11					
жира	3,58	3,63					
Количество азота, выведенного из организма с мочой, г/гол./сут.	250	204					
Эффективность использования азота, %	28	31					
IOFC	3,08	3,83					
Стадо Б							
Содержание сырого протеина, %	17,7	16,9					
Потребление азота, г/гол./сут.	655	629					
Среднесуточный удой, кг/гол.	37,2	36,3					
Массовая доля в молоке, %:							
белка	2,96	3,07					
жира	3,56	3,63					
Количество азота, выведенного из организма с мочой, г/гол./сут.	236	210					
Эффективность использования азота, %	28	30					
IOFC	3,01	3,22					

Примечание. IOFC — прибыль за вычетом затрат на корма.

Иногда расщепляемый протеин путают с растворимым. Растворимый протеин — это часть расщепляемого в рубце протеина, включающего в том числе медленно расщепляемый в рубце протеин. Таким образом, расщепляемый в рубце протеин (распадаемый, деградируемый, рубцовый протеин) — часть сырого протеина рациона или корма, который под действием микрофлоры расщепляется в рубце до аммиака и используется ею для синтеза микробного белка в преджелудках жвачных животных.

Нерасщепляемый в рубце протеин (нераспадаемый, защищенный от распада в рубце, транзитный, байпас-протеин, кишечный, проходной) недоступен для усвоения рубцовой микрофлорой. Он поступает в тонкий отдел кишечника, где и переваривается.

В зоотехнии уровень сырого протеина в корме или рационе рассчитывают так: показатель «содержание общего азота» умножают на постоянный коэффициент 6,25 (средняя концентрация азота в протеине — 16%). Потребление кормосмесей с избытком сырого протеина отрицательно сказывается на здоровье жвачных животных. Чем больше сырого протеина потребит корова, тем больше в ее организме образуется аммиака. При превышении порогового содержания (около 40 мг%) этого вещества в крови печень не успевает его нейтрализовывать. В результате происходит отравление животных.

Излишки сырого протеина в рационах — основная причина загрязнения окружающей среды азотистыми соединениями (они входят в состав отходов жизнедеятельности животных). Необходимо учитывать, что сырой протеин — один из самых дорогостоящих компонентов (35—55% от стоимости рациона), а эффективность его использования в организме крупного рогатого скота довольно низкая (в среднем 25%). Данные исследований свидетельствуют о том, что показатель «использование протеина» варьирует в достаточно широком диапазоне — от 10 до 40% (Calsamiglia et al., 2010).

Термин «сырой протеин» не говорит о ценности аминокислотного состава белков сырого протеина. В ходе многочисленных экспериментов было установлено, что в рационах для моногастричных животных уровень сырого протеина можно снизить путем оптимизации его аминокислотного состава. Включение «недостающей» аминокислоты в рацион оказывает незначительное влияние на концентрацию в нем сырого протеина, но существенно повышает эффективность использования аминокислот в организме моногастричных животных. Аналогичные результаты получили и в опытах со жвачными.

Принято считать: чем больше в рационе сырого протеина, тем выше будет продуктивность коров. Именно это заблуждение становится причиной низкой эффективности использования азота кормов. Очень часто высокопродуктивным животным дают кормосмеси с избытком сырого протеина (> 18% в CB), а ведь доказано, что увеличение его концентрации сверх нормы (16-16,5% в CB) не коррелирует с ростом молочной продуктивности (*Глухов Д.*, 2021).

В этом аспекте показателен эксперимент ученых из Висконсинского университета в Мэдисоне (США). Лактирующим коровам скармливали рационы, в которых содержание сырого протеина варьировало от 13,5 до 19,4% (Colmenero, Broderick, 2006). По мере увеличения в кормосмеси доли сырого протеина с 13,5 до 16,5% в СВ суточный удой вырос с 36,3 до 38,3 кг на голову, а при дальнейшем повышении содержания сырого протеина суточный удой снизился до 36,6 кг на голову. Было отмечено, что при увеличении содержания сырого протеина в рационе количество азота (непереваренный протеин) и, соответственно, белка, выделенного с молоком, не изменилось. Количество азота, выведенного из организма с калом, осталось на прежнем уровне, в то время как количество азота в моче существенно возросло.

Эффективность использования протеина можно улучшить путем правильного нормирования всех показателей протеиновой питательности рационов (грамотный подбор кормов и включение необходимых кормовых добавок). Данные эксперимента, проведенного в 2012 г. Л. Чейзом, свидетельствуют о том, что оптимизация аминокислотного профиля нерасщепляемого в рубце протеина позволяет не только уменьшить общую концентрацию сырого протеина в рационе и сократить потери азота с фекалиями, но и повысить содержание жира и белка в молоке (табл. 2).

Из таблицы 2 видно, что среднесуточный удой в стаде Б немного снизился, однако показатель IOFC в обоих стадах существенно увеличился при скармливании коровам оптимизированных по аминокислотному профилю кормосмесей (в них содержалось меньше сырого протеина, чем в исходных вариантах). Рост содержания белка в молоке коров обоих стад при использовании оптимизированных вариантов кормосмесей объясняется соответствующим повышением эффективности использования азота в организме с 28 до 30—31%.

В фекалиях жвачных животных больше, чем в фекалиях моногастричных, не только органических веществ, но и азота (2,2—2,6% в СВ, или 14—16% сырого протеина), что представляет серьезную опасность для экологии. Результаты последних научных исследований дают основание полагать, что снижение концентрации азота в СВ рациона на 1% при одновременном балансировании аминокислотного профиля обменного протеина способствует сокращению выделения азота в окружающую среду примерно на 10%.

Продолжение в следующем номере **Республика Беларусь**