УДК 635.087.74 DOI: 10.25701/ZZR.2024.05.005

Обогащаем комбикорма синтетическим глицином

Елена БАЙКОВСКАЯ, кандидат биологических наук **Елена АБАШКИНА Вардгес МАНУКЯН**, доктор сельскохозяйственных наук **ФНЦ «ВНИТИП»**

Реализовать генетический потенциал мясной птицы можно путем скармливания ей комбикормов, сбалансированных по всем питательным и биологически активным веществам в соответствии с потребностью в них. Вопрос полноценного протеинового питания бройлеров — это, по сути, вопрос обеспеченности их аминокислотами, ведь кормовые белки как таковые перестают существовать уже на этапе переваривания в организме. Во всех дальнейших биохимических процессах участвуют продукты ферментативного расщепления протеина — аминокислоты.

теные оценили биологическую роль 20 содержащихся в кормах аминокислот и определили потребность птицы в них. При составлении рационов рассчитывают уровень 11 незаменимых аминокислот — метионина, лизина, триптофана, аргинина, валина, гистидина, лейцина, изолейцина, треонина, фенилаланина и тирозина. В корме они должны содержаться в определенном соотношении во избежание дефицита, дисбаланса и антагонизма между этими органическими веществами.

Как правило, количество лизина в рационе принимают за 100%, а количество остальных аминокислот выражают в процентах от уровня лизина. Такой аминокислотный ряд специалисты называют аминокислотным профилем, или аминокислотной линейкой (*Лемешева М.*, 2006; *Кун К.*, 2011; *Подобед Л.*, 2017).

Многие исследователи говорят о необходимости нормирования глицина в комбикормах. Для взрослой птицы глицин — заменимая аминокислота, для молодняка — незаменимая или частично незаменимая аминокислота, поскольку в организме цыплят она синтезируется в малом объеме.

В организме глицин образуется из серина при обратимой реакции, катализируемой ферментом серингидроксиметилтрансферазой. По такой же схеме серин трансформируется из глицина. Кроме того, было установлено, что глицин может превращаться в треонин и холин (DeanD., Bidner T., Southern L., 2006; van Harn J., Dijkslag M., van Krimpen M., 2016; Siegert W., Rodehutscord M., 2017).

Глицин входит в состав белков — кератина, коллагена и эластина, служит предшественником глутатиона (трипептид, состоящий из трех аминокислот — цистеина, глицина и глутамина), оснований нуклеиновых кислот, гема, креатина и желчных кислот.

В организме птицы основным конечным продуктом обмена азота является мочевая кислота. Данные исследований свидетельствуют о том, что для синтеза одного моля (168 г) мочевой кислоты, помимо прочего, необходим один моль глицина (75 г). Это служит дополнительным фактором повышения потребности бройлеров в глицине при скармливании им комбикормов с пониженным уровнем протеина (Ospina-Rojas I., Murakami A., Oliveira C., Guerra A., 2013; Krisel-di R., Tillman P., Jiang Z., Dozier W., 2018).

Общеизвестно, что при использовании кормосмесей с избытком протеина из организма животных выделяется большое количество азота, а значит, нагрузка на окружающую среду существенно увеличивается. К тому же у птицы, потребляющей корма, в которых содержание сырого протеина превышает норму, ухудшается здоровье, а именно нарушается обмен веществ, приводящий к развитию различных патологий (например, пододерматит и мочекислый диатез).

Во всем мире ученые решают задачу по определению необходимого минимального уровня усвояемых аминокислот и их соотношения в комбикорме в соответствии с концепцией идеального баланса протеина и рассчитывают оптимальный минимальный уровень сырого протеина в рационах (его должно быть достаточно для синтеза заменимых аминокислот и других веществ, обеспечивающих жизнеспособность птицы). Цель — сокращение количества «лишних» продуктов азотистого обмена, выделяющихся из организма и уменьшение нагрузки на экологию.

Результаты научно-хозяйственных опытов показали, что при снижении в комбикорме содержания сырого протеина более чем на 2% продуктивность бройлеров существенно ухудшалась. Было сделано предположение о том, что это связано с дефицитом глицина (Ospina-Rojas I., Murakami A., Oliveira C., Guerra A., 2013; Siegert W., Rodehutscord M., 2017). Мы провели исследование, по результатам которого оценили эффективность скармливания бройлерам комбикормов с синтетическим глицином. Его включали в кормо-

КОРМА

смеси растительного типа разной питательности.

Эксперимент проводили в условиях птичника № 1 СГЦ «Загорское ЭПХ». Суточных цыплят кросса «Смена 9» разделили на четыре группы — две контрольные (первая — отрицательный контроль, вторая — положительный контроль) и две опытные — по 35 голов в каждой. Плотность посадки, световой и температурный режимы соответствовали рекомендациям (*Егоров И.*, *Манукян В.*, *Ленкова Т. и др.*, 2013). Птицу выращивали до достижения ею возраста 34 суток.

В первые пять дней жизни молодняк всех групп получал корм в виде крошки, в дальнейшем — рассыпные комбикорма: стартерный — с 6-го по 14-й день, ростовой — с 15-го по 21-й день, финишный — с 22-го дня до убоя).

В комбикорма для бройлеров первой контрольной группы вводили син-

тетический глицин. В стартерном комбикорме содержание сырого протеина, обменной энергии (ОЭ) и усвояемого глицина составляло соответственно 22,5%, 310 ккал/100 г и 0,85%, в ростовом — 21%, 315 ккал/100 г и 0,77%, в финишном — 20%, 320 ккал/100 г и 0,73%.

Аналогам второй контрольной группы скармливали аналогичные по питательности комбикорма, но без добавления синтетического глицина. В стартерном комбикорме концентрация усвояемого глицина достигала 0,72%, в ростовом — 0,66%, в финишном — 0,63%.

В комбикорма для птицы опытных групп также вводили синтетический глицин в стандартной дозе. При этом питательность комбикормов для особей первой и второй опытных групп была ниже, чем питательность комбикормов для сверстников контроль-

ных групп, соответственно на 2 и 4%. В стартерном комбикорме для бройлеров первой опытной группы содержалось 20,5% сырого протеина, 304 ккал/100г ОЭ и 0,78% усвояемого глицина, в ростовом — соответственно 19%, 309 ккал/100 г и 0,7%, в финишном — 18%, 314 ккал/100 г и 0,65%.

В стартерном комбикорме для птицы второй опытной группы содержалось 19% сырого протеина, 298 ккал/100 г ОЭ и 0,7% усвояемого глицина, в ростовом — соответственно 17%, 302 ккал/100 г и 0,62%, в финишном — 16%, 307 ккал/100 г и 0,58%.

Уровень незаменимых аминокислот — лизина, метионина, треонина, триптофана, лейцина, изолейцина, аргинина, валина, а также частично заменимой аминокислоты глицина в комбикормах для бройлеров опытных групп снижали пропорционально уровню сырого протеина.

Основные зоотехнические показатели

Таблица 1

	Группа				
Показатель	контрольная		пытная		
	первая	вторая	первая	вторая	
Сохранность поголовья, %	100	100	100	100	
Живая масса, г:					
в возрасте 1 дня	42,23	42,39	42,17	42,51	
в возрасте 8 дней	207,6	207,5	208,3	208,6	
в возрасте 21 дня	933,5	927,6	955,1	892,4	
по отношению к показателям, зарегистрированным в первой и во второй контрольных группах	_	-0,6	+2,3/+3	-4,4/-3,8	
в возрасте 34 дней:					
петушков	2186,8	2132,5	2159,6	2075,7	
по отношению к показателям, зарегистрированным в первой и во второй контрольных группах	_	-2,5	-1,2/+1,3	-5,1/-2,7	
курочек	1938,6	1917,2	1936,8	1907,3	
по отношению к показателям, зарегистрированным в первой и во второй контрольных группах	_	-1,1	-0,1/+1	-1,61/-0,5	
средняя живая масса (курочки + петушки)	2062,7	2049,9	2048,2	1991,5	
по отношению к показателям, зарегистрированным в первой и во второй контрольных группах	_	-1,8	-0,7/+1,5	-3,45/-1,65	
Среднесуточный прирост живой массы, г	59,4	58,3	59	57,3	
Затраты корма за период исследования, кг:					
на голову	3,013	2,993	2,992	3,014	
на 1 кг прироста живой массы	1,485	1,499	1,465	1,52	
по отношению к показателям, зарегистрированным в первой и во второй контрольных группах	_	+0,94	-1,35/-2,27	+2,36/+1,4	
Индекс продуктивности, ед.	409	398	412	392	
Убойный выход:					
%	71,82	71,14	71,25	69,69	
по отношению к показателям, зарегистрированным в первой и во второй контрольных группах	_	-0,68	-0,57/+0,11	-2,13/-1,45	
Масса грудной мышцы:					
Γ	463,7	443,2	448,3	421	
% от массы потрошеной тушки	31,23	30,14	30,23	29,77	

Переваримость питательных веществ, использование азота и доступность аминокислот

	Группа				
Показатель	контрольная		опытная		
	первая	вторая	первая	вторая	
Переваримость, %:					
СВ	74,51	73,29	74,92	73,79	
протеина	93,87	93,66	93,82	92,58	
жира	88,45	87,05	87,84	83,87	
Использование азота в организме, %	65,19	64,36	64,77	62,41	
Доступность аминокислот, %:					
лизина	91	90,75	90,97	87,71	
метионина	94,17	93,05	94,25	93,28	
глицина	65,07	59,89	68,8	59,28	

Данные проведенного нами эксперимента свидетельствуют о том, что при скармливании менее питательных кормосмесей, обогащенных синтетическим глицином, зоотехнические показатели находились в пределах нормы (табл. 1).

Во всех группах сохранность поголовья составляла 100%. Добавка глицина в комбикорма стандартной питательности способствовала увеличению продуктивности птицы: живая масса петушков первой контрольной группы увеличилась на 2,5%, курочек — на 1,1%, а конверсия корма улучшилась на 0,94% по сравнению с аналогичными показателями, зафиксированными во второй контрольной группе.

При снижении протеиновой питательности рационов на 2% и включении в них незаменимых аминокислот и глицина петушки первой опытной группы по скорости роста превосходили сверстников первой контрольной группы на 1,3%, но уступали по этому показателю аналогам второй опытной группы на 1,2%. Между живой массой курочек первой опытной и второй контрольной групп существенных различий не выявили. Конверсия корма в первой опытной группе оказалась наилучшей, то есть коэффициент был ниже, чем в первой и во второй контрольных группах, соответственно на 1,35 и 2,27%.

Бройлеры второй опытной группы, получавшие кормосмесь, питательность которой уменьшили на 4%, с 21-го дня выращивания по скорости роста начали отставать от птицы контрольных и первой опытной групп. Так, в возрасте 34 дней живая масса петушков второй опытной группы была достоверно ниже, чем живая масса ана-

логов первой и второй контрольных групп, соответственно на 5,1 (p < 0,01) и 2.7%.

Курочки второй опытной группы, потреблявшие менее питательный комбикорм с добавлением незаменимых аминокислот и глицина, в возрасте 34 дней уступали птице первой и второй контрольных групп по живой массе соответственно на 1,6 и 0,5%. Отмечено, что во второй опытной группе коэффициент конверсии корма оказался выше, чем в первой и во второй контрольных группах, соответственно на 2,36 и 1,4%.

Данные контрольного убоя показали, что в первой контрольной группе убойный выход и масса грудной мышцы бройлеров снизились соответственно на 0,68 и 1,09% по сравнению с такими же показателями, зарегистрированными во второй контрольной группе. В первой опытной и первой контрольной группах убойный выход и масса грудной мышцы птицы оказались одинаковыми. Во второй опытной группе убойный выход и масса грудной мышцы бройлеров уменьшились соответственно на 2,13 и 1,45% и на 1,46 и 0,37% по сравнению с аналогичными показателями, зафиксированными в первой и во второй контрольных группах.

Полученные нами данные были подтверждены результатами балансового опыта (табл. 2).

Установлено, что в организме бройлеров второй опытной группы переваримость протеина и жира, использование азота и доступность лизина были такими же, как в организме птицы первой контрольной группы, а вот доступность глицина увеличилась на 3,73%. В организме петушков и курочек второй опытной группы переваримость протеина снизилась на 1,29%, жира — на 4,58%, использование азота ухудшилось на 2,78%, а доступность лизина — на 3,29% по сравнению с переваримостью и использованием этих компонентов в организме сверстников первой контрольной группы.

Включение глицина в комбикорма стандартной питательности способствовало увеличению среднесуточного прироста живой массы бройлеров, убойного выхода и массы грудной мышцы соответственно на 1,85; 0,68 и 1,09%, а также снижению коэффициента конверсии корма на 0,94%.

Можно сделать вывод о том, что ввод синтетического глицина в комбикорма, протеиновая питательность которых была уменьшена на 2%, положительно сказался на доступности глицина, скорости роста петушков и на конверсии корма. Снижение питательности рационов на 4% привело к ухудшению всех изучаемых показателей, несмотря на то что комбикорма для птицы второй опытной группы обогащали синтетическим глицином.

В конце периода выращивания средняя живая масса бройлеров, переваримость протеина и жира в их организме, а также доступность лизина были ниже, чем аналогичные показатели, зарегистрированные в контрольных и первой опытной группах. При этом конверсия корма оказалась хуже.

Таким образом, доказано, что мясной птице можно скармливать комбикорм, протеиновая питательность которого на 2% меньше, чем питательность стандартной кормосмеси, при условии обогащения рационов синтетическим глицином.

Московская область