Рыжик —

источник белка и энергии

Включаем семена, жмых и масло в комбикорма для бройлеров

Иван ЕГОРОВ, доктор биологических наук, профессор, академик РАН **Татьяна ЕГОРОВА**, кандидат сельскохозяйственных наук **ФГБНУ ФНЦ «ВНИТИП»**

Организация рационального кормления птицы и реализация ее генетического потенциала — ключевые условия повышения эффективности производства мяса и яйца. Важная задача, которую необходимо решить в первую очередь, — восполнение дефицита кормового белка и энергии в комбикормах. Если в рационах концентрация протеина ниже действующих нормативных значений, ухудшается потребление корма и увеличивается себестоимость мяса бройлеров. Следовательно, необходимо расширять площади под посевами богатых белком сои, люпина, гороха, подсолнечника и рапса, повышать их урожайность, а кроме того, включать в кормосмеси продукты переработки — жмыхи и шроты.

егодня наряду с выращиванием традиционных масличных культур в разных регионах России осваивают возделывание рыжика (Camelina). Это многолетнее растение семейства крестоцветных. Оно неприхотливо, хорошо переносит кратковременную засуху. Рыжик произрастает вдоль проселочных дорог и часто воспринимается как сорное растение. Стабильно плодоносит на любых почвах (исключение - болотистая местность и солончаки). Плоды рыжика располагаются на тонкой цветоножке, достаточно удаленной от стебля, представляют собой мелкий стручок овальной формы около 1 см в длину. Рыжик зацветает весной, а плодоносит летом.

Стенки плодов рыжика крепкие и толстые, внутри находятся мелкие семена. В них содержится до 28% сырого протеина и до 40% жира. В нашей стране в кормопроизводстве рыжик практически не использовали. Это обусловлено его химическим составом. В жирорастворимой части семян рыжика

содержится эруковая кислота, а в водорастворимой — глюкозиды, которые в процессе переработки семян, а также при их переваривании в желудочно-кишечном тракте разрушаются с образованием ряда токсических соединений (Егоров И.А., Егорова Т.В., Петров А.Б., 2008; Пономаренко Ю.А., Фисинин В.И., Егоров И.А., 2020).

В связи с перспективой развития производства рыжика как масличной культуры и практической целесообразностью применения продуктов его переработки в кормлении бройлеров мы провели три научных эксперимента, по результатам которых определили кормовую ценность комбикормов с семенами, жмыхом и маслом из рыжика сорта Пензяк.

Исследование проходило в СГЦ «Загорское ЭПХ» в 2020 г. Бройлеров селекции СГЦ «Смена» содержали в клеточных батареях типа P-15. Во все периоды выращивания плотность посадки, световой, температурный и влажностный режимы, а также фронт кормления

и поения во всех группах были одинаковыми и соответствовали рекомендациям (*Егоров И.А.*, *Манукян В.А.*, *Ленкова Т.Н. и др.*, 2013; *Егоров И.А.*, *Манукян В.А.*, *Околелова Т.М. и др.*, 2018).

Птица контрольных групп получала полнорационные комбикорма с соевым шротом и подсолнечным маслом, а аналоги опытных групп — такие же комбикорма, но с семенами рыжика, с рыжиковым жмыхом и рыжиковым маслом. Эти продукты предоставили ученые Пензенского НИИСХ.

В ходе экспериментов регистрировали такие показатели, как сохранность поголовья (учитывали отход и устанавливали его причину), живая масса бройлеров в возрасте 1, 14, 21 и 35 дней, потребление корма за период выращивания и затраты корма на 1 кг прироста живой массы. Переваримость и использование птицей основных питательных веществ комбикорма оценивали по результатам физиологического опыта (его проводили по достижении цыплятами возраста 28-34 дней), убойный выход и выход грудных мышц — по данным контрольного убоя. Кроме того, определили жирнокислотный состав липидов внутреннего жира и гомогената мышц и провели органолептическую оценку мяса.

Химический состав семян рыжика и продуктов их переработки представлен в **таблице 1**.

Ни в цельных семенах рыжика, ни в продуктах его переработки глюкозинолатов не выявили. Уровень эруковой

КОРМА

кислоты в рыжиковом масле не превышал 1,25%. Следует отметить, что протеин этой культуры очень хорошо сбалансирован по аминокислотам.

В рыжиковом масле, как и в подсолнечном, сравнительно мало насыщенных жирных кислот, в частности пальмитиновой и стеариновой. В подсолнечном масле на их долю приходится в среднем 12,76%, а в рыжиковом — 2,98%. Данные химического анализа свидетельствуют о том, что в подсолнечном масле содержалось 57,58% ненасыщенной незаменимой линолевой кислоты, а в рыжиковом — 22,23%, то есть на 35,35% меньше. При этом в подсолнечном масле оказалось боль-

ше линоленовой кислоты, а в рыжиковом — олеиновой.

В ходе первого эксперимента суточных цыплят разделили на семь групп — контрольную и шесть опытных — по 30 голов в каждой. Птица получала основной рацион, сбалансированный по всем питательным веществам согласно рекомендациям ВНИТИП. Различия в кормлении заключались в том, что в комбикорм для бройлеров контрольной группы вводили соевый шрот, а в кормосмесь для аналогов опытных групп — семена рыжика: первой и второй — по 7,5%, третьей и четвертой — по 10%, пятой и шестой — по 12%. При этом в рационы для цыплят второй, четвертой

и шестой опытных групп добавляли содержащий ксиланазу и целлюлазу ферментный препарат в дозе 75 г/т корма.

Было отмечено, что в контрольной и опытных группах сохранность поголовья составляла 100%. Основные зоотехнические показатели, зарегистрированные в первом эксперименте, представлены в таблице 2.

Установлено, что в возрасте 35 дней средняя живая масса птицы пятой опытной группы оказалась на 1,56% меньше, чем средняя живая масса аналогов контрольной группы. При скармливании комбикормов с добавлением ферментного препарата (вторая и четвертая опытные группы) живая масса

Та Химический состав семян рыжика и продуктов его переработки							Таблица 1
Показатель	Семена	Жмых	Масло	Показатель	Семена	Жмых	Масло
03:				серин	1,22	1,54-1,62	_
МДж/кг	14,204	9,721-10,224	37,375	глутаминовая кислота	4,7	5,91-6	_
ккал/100 г	339	232-244	892	аспарагиновая кислота	2,14	2,62-2,75	_
CB, %	92,7	92,8	_	пролин	1,21	1,47-1,58	_
Сырой протеин, %	29	26,9-36,8	_	аланин	1,14	1,38-1,44	_
Сырой жир, %	39,6	10,8-12,9	99	аргинин	1,8	1,92-2,27	_
Сырая клетчатка, %	7	14,2-21	_	валин	1,11	1,3-1,43	_
Сырая зола, %	4,04	7,14-8,25	_	гистидин	0,94	1,14-1,24	_
БЭВ, %	17,9	24,17-25,42	_	глицин	1,35	1,65-1,76	_
Caxapa, %	5,4	8,2-8,4	_	изолейцин	0,77	0,92-0,98	_
Крахмал, %	1,45	1,8-1,98	_	лейцин	1,61	1,93-2,02	_
Кислота, %:			_	фенилаланин	1,12	1,32-1,44	_
линолевая	2,32	0,42-0,49	16,4	тирозин	0,81	0,98-1,04	_
эруковая	_	_	1,25	Минеральное вещество, %:			
Аминокислота, %:				кальций 0,4 0,84-0		0,84-0,88	_
лизин	1,28	1,52-1,72	_	фосфор:			
метионин	0,62	0,8-0,84	_	общий	0,62	1,14-1,18	_
метионин + цистин	1,34	1,49-1,74	_	доступный	0,21	0,42-0,47	_
треонин	1,14	1,14-1,52	_	натрий 0,33 0,06		_	
триптофан	0,28	0,35-0,48	_	калий	1,4	1,21-1,24	_

Примечание. 09 — обменная энергия, СВ — сухое вещество, БЭВ — безазотистые экстрактивные вещества.

	Основные зоот	ехнические по	казатели (пепві	чи эксперимен.	τ)		Таблица 2	
	Основные зоотехнические показатели (первый эксперимент) Группа							
Показатель		опытная						
	контрольная	первая	вторая	третья	четвертая	пятая	шестая	
Средняя живая масса, г:								
в возрасте 1 дня	42,63	42,64	42,58	42,58	42,61	42,63	42,59	
в возрасте 14 дней	382	388	390	389	392	378	386	
в возрасте 21 дня	939	946	974	949	970	925	939	
в возрасте 35 дней	1229	1967	1971	1944	1962	1899	1911	
петушков	2032	2085	2089	2060	2113	2002	2014	
курочек	1826	1849	1853	1827	1810	1796	1808	
Среднесуточный прирост живой массы, г	53,9	54,98	55,1	54,33	54,84	53,04	53,38	
Затраты корма:								
за период выращивания, кг/гол.	3,32	3,323	3,276	3,347	3,3	3,615	3,363	
на 1 кг прироста живой массы, кг	1,76	1,727	1,699	1,76	1,719	1,947	1,8	
Выход грудных мышц, % от массы потрошеной тушки	24	24,38	24,78	24,92	25,02	23,87	24,14	

бройлеров увеличилась на 1,71 и 2,18% по сравнению с живой массой особей контрольной группы. Отмечено, что птица шестой опытной группы по живой массе уступала сверстникам контрольной группы на 0,93%.

Петушки и курочки опытных групп хорошо отреагировали на включение семян рыжика в комбикорм. Они охотно поедали его. В период исследования во второй и в четвертой опытных группах затраты корма на прирост живой массы оказались ниже, чем в первой и третьей опытных группах, соответственно на 1,6 и 2,33%. По этому показателю птица пятой и шестой опытных групп уступала аналогам контрольной группы соответственно на 10,63 и 2,27%. По убойному выходу и выходу грудных мышц существенных различий не выявили.

Балансовый (физиологический) опыт показал, что применение ферментных препаратов положительно повлияло на переваримость и усвояемость питательных веществ. Установлено, что переваримость протеина и жира, доступность лизина и метионина, а также использование азота в организме бройлеров первой, второй, третьей и четвертой опытных групп были такими же, как в организме особей контрольной группы. Однако при увеличении нормы ввода семян рыжика до 12% переваримость протеина и жира, доступность лизина и метионина, а также использование азота оказались ниже соответственно на 2,5; 1; 1,1; 0,7 и 1,2%. По использованию кальция и фосфора в организме птицы контрольной и опытных групп различий не выявили.

Основной фактор, лимитирующий применение кормовых культур семейства крестоцветных в кормлении сельскохозяйственной птицы, — наличие в них антипитательных веществ. Они нарушают синтез трийодтиронина и тироксина в щитовидной железе. В итоге ее размеры увеличиваются из-за разрастания ткани при одновременной атрофии железистых элементов (зоб).

При повышении доли семян рыжика до 12% абсолютная и относительная масса щитовидной железы бройлеров шестой опытной группы оказалась больше, чем абсолютная и относительная масса щитовидной железы сверстников контрольной группы, соответственно на 85,16 мг и 0,0041 мг.

В ходе второго эксперимента цыплят разделили на четыре группы — кон-

основные зоотехнические показатели (второи эксперимент)						
	Группа					
Показатель	контрольная	опытная				
		первая	вторая	третья		
Средняя живая масса, г:						
в возрасте 1 дня	42,72	42,65	42,33	42,67		
в возрасте 14 дней	442,2	451,76	440,44	431,48		
в возрасте 21 дня	822,51	848,34	825,69	800,2		
в возрасте 35 дней	2109	2179	2150	2062		
петушков	2233,2	2332,07	2300,31	2180		
курочек	1984,05	2026,05	2000,09	1944,14		
Среднесуточный прирост живой массы, г	59,04	61,04	60,22	57,7		
Затраты корма:						
за период выращивания, кг/гол.	3,24	3,245	3,25	3,304		
на 1 кг прироста живой массы, кг	1,568	1,519	1,541	1,636		
Выход грудных мышц, % от массы потрошеной тушки	24,55	25,12	24,9	24,27		

трольную и три опытные — по 35 голов в каждой. Птица получала основной рацион, сбалансированный по всем питательным веществам согласно рекомендациям ВНИТИП. Различия в кормлении заключались в том, что в комбикорм для бройлеров контрольной группы включали соевый шрот, а в кормосмесь для аналогов опытных групп вводили рыжиковый жмых: первой — 5%, второй — 10%, третьей — 15%.

Было установлено, что в контрольной и опытных группах сохранность поголовья составляла 100%. Основные зоотехнические показатели, зарегистрированные во втором эксперименте, представлены в таблице 3.

В возрасте 35 дней курочки первой и второй опытных групп по живой массе превосходили аналогов контрольной группы соответственно на 2,12 и 0,81%. В конце периода выращивания живая масса петушков первой и второй опытных групп была больше, чем живая масса сверстников контрольной группы, соответственно на 4,43 и 3,01%. Среднесуточный прирост живой массы птицы первой и второй опытных групп оказался выше, чем среднесуточный прирост живой массы особей контрольной группы, соответственно на 3,39 и 2%.

Полнорационные комбикорма с рыжиковым жмыхом цыплята поедали охотно. За время исследования бройлеры первой, второй и третьей опытных групп из расчета на голову потребили больше корма, чем аналоги контрольной группы, соответственно на 0,15; 0,31 и 1,98%. За период эксперимента в первой и во второй опытных группах затраты корма на 1 кг прироста живой мас-

сы оказались ниже, чем в контрольной группе, соответственно на 3,12 и 1,66%. В третьей опытной группе затраты корма на 1 кг прироста живой массы были на 4,34% выше, чем в контрольной.

Ни в одной из групп не выявили существенных различий по таким показателям, как убойный выход и выход грудных мышц в тушке. Следовательно, включение рыжикового жмыха в комбикорм не оказало отрицательного влияния на продуктивность птицы.

Результаты физиологического опыта свидетельствуют о том, что в организме цыплят первой и второй опытных групп протеин усваивался на 1,3-2,9% эффективнее, чем в организме молодняка контрольной группы. Использование азота корма в организме птицы всех групп находилось в пределах нормы (50,8-52%), однако в организме аналогов, получавших комбикорм с рыжиковым жмыхом, азот усваивался лучше. По этому показателю бройлеры опытных групп превосходили сверстников контрольной группы на 0,3-1,5%. По использованию кальция в организме птицы контрольной и опытных групп различий не зафиксировали.

В комбикормах доступность лизина варьировала от 80,3 до 82,3%, а метионина — от 80,8 до 82,9%. В организме молодняка первой и второй опытных групп лизин и метионин усваивались эффективнее, чем в организме сверстников контрольной группы, соответственно на 1–1,9% и на 1,1–2,1%. Установлено, что при скармливании комбикормов как с соевым шротом, так и с рыжиковым жмыхом переваримость жира в организме бройлеров достигала 76,7%.

КОРМА

Анализ химического состава мяса показал, что в грудных мышцах бройлеров первой и второй опытных групп концентрация протеина оказалась выше, чем в мышечной ткани аналогов контрольной группы, соответственно на 0,11 и 2%. В грудных мышцах птицы опытных групп содержание СВ, жира и золы было таким же, как в грудных мышцах особей контрольной группы, а значит, использование рыжикового жмыха не оказало отрицательного влияния на качество мяса.

В ходе третьего эксперимента цыплят разделили на три группы — контрольную и две опытные — по 30 голов в каждой. Молодняк получал основной рацион, сбалансированный по всем питательным веществам согласно рекомендациям ВНИТИП. В комбикорм для бройлеров контрольной группы включали подсолнечное масло: с 1-го по 14-й день — 6,1%, с 15-го по 21-й день — 6,98%, с 22-го по 35-й день — 7,85%. В кормосмесях для аналогов опытных групп подсолнечное масло частично или полностью заменяли рыжиковым маслом. Так, в рацион для птицы первой опытной группы с 1-го по 14-й день вводили 3,05% рыжикового масла, с 15-го по 21-й день — 3,49%, с 22-го по 35-й день — 3,93% (частичная замена), в рацион для сверстников второй опытной — соответственно 6,1; 6,98 и 7,85% (полная замена).

Было установлено, что в контрольной и опытных группах сохранность поголовья составляла 100%. Основные зоотехнические показатели, зарегистрированные в третьем эксперименте, представлены в таблице 4.

Результаты взвешивания свидетельствуют о том, что бройлеры первой и второй опытных групп превосходили особей контрольной группы по живой массе: в возрасте 14 дней — соответственно на 2,1 и 1,31%, в возрасте 21 дня — на 1,71 и 0,1%, в возрасте 35 дней — на 0,62 и 0,16%. Петушки и курочки хорошо отреагировали на ввод рыжикового масла в комбикорма. Среднесуточный прирост живой массы птицы опытных групп был выше, чем среднесуточный прирост живой массы аналогов контрольной группы.

В контрольной и опытных группах существенных различий по потреблению корма не выявили. При частичной замене в комбикорме подсолнечного масла рыжиковым (50 : 50) затраты корма на 1 кг прироста живой массы оказались ниже на 1,16%, а при полной замене были такими же, как при вводе в кормосмесь только подсолнечного масла. По убойному выходу и выходу грудных мышц различий не установлено. Это говорит о том, что использование рыжикового масла положительно повлияло на продуктивность птицы.

Данные физиологического (балансового) опыта показали, что в организме особей первой и второй опытных групп СВ усваивалось эффективнее, чем в организме аналогов контрольной группы, соответственно на 1,2 и 0,4%, а азот корма — на 1,55 и 0,4%.

Не выявили различий и по содержанию насыщенных, моно- и полиненасыщенных жирных кислот в липидах внутреннего жира: уровень насыщенных жирных кислот варьировал от 35,14 до 35,92%, мононенасыщенных —

от 38,61 до 40,19%, а полиненасыщенных — от 23,8 до 25,47%. Однако следует отметить, что наименьшее количество олеиновой кислоты содержалось в липидах внутреннего жира бройлеров контрольной группы.

Органолептическая оценка показала, что полученное мясо обладало хорошими вкусовыми свойствами, следовательно, включение рыжикового масла в рацион не сказалось на качестве продукта отрицательно.

При выращивании бройлеров рекомендуем вводить в комбикорм 10% семян рыжика, так как при увеличении их доли до 12% возрастают затраты корма. Добавка ферментного препарата с ксиланазной и целлюлазной активностью способствовала повышению эффективности использования кормов в организме.

В кормосмесь целесообразно включать 10% рыжикового жмыха, поскольку увеличение его доли до 15% приводит к снижению живой массы поголовья и ухудшению конверсии корма. Можно говорить и о том, что при частичной (50%) замене в рационе подсолнечного масла рыжиковым зоотехнические показатели улучшаются.

Данные исследования показывают, что семена и продукты переработки рыжика не оказывают токсического действия на организм птицы. Тем не менее применять их нужно осторожно. Антипитательные вещества, такие как глюкозинолаты и эруковая кислота, являются причиной нарушения функции щитовидной железы. При скармливании комбикормов с 12% семян рыжика сорта Пензяк (не содержит глюкозинолатов) абсолютная масса щитовидной железы бройлеров увеличилась до 363,13 мг (гипертрофия). Для сравнения — масса щитовидной железы аналогов контрольной группы составляла 277,97 мг. Был следан вывод о том, что «зобогенными» свойствами обладают как глюкозинолаты, так и их производные.

Таким образом, научно доказано и подтверждено на практике, что при вводе в кормосмесь семян рыжика и рыжикового жмыха вместо части соевого шрота, а также рыжикового масла вместо подсолнечного масла в рекомендованных дозах себестоимость комбикормов снижается, продуктивность поголовья растет, а качество мяса улучшается.

Московская область

Таблица 4 Основные зоотехнические показатели (третий эксперимент)

Основные зоотехнические показатели (третий эксперимент)							
	Группа						
Показатель	контрольная	опытная					
		первая	вторая				
Средняя живая масса, г:							
в возрасте 1 дня	42,72	42,68	42,66				
в возрасте 14 дней	381	389	386				
в возрасте 21 дня	875	890	876				
в возрасте 35 дней	1929	1941	1932				
петушков	2032	2050	2040				
курочек	1826	1832	1823				
Среднесуточный прирост живой массы, г	53,89	54,24	53,98				
Затраты корма:							
за период выращивания, кг/гол.	3,239	3,222	3,229				
на 1 кг прироста живой массы, кг	1,717	1,697	1,709				
Выход грудных мышц, % от массы потрошеной тушки	24,37	24,4	24,36				